
ON THE TOPOLOGY OF SUMS IN POWERS
OF AN ALGEBRAIC NUMBER

NIKITA SIDOROV AND BORIS SOLOMYAK

Abstract. Let 1 < q < 2 and

Λ(q) =

{
n∑

k=0

akqk | ak ∈ {−1, 0, 1}, n ≥ 1

}
.

It is well known that if q is not a root of a polynomial with coefficients
0,±1, then Λ(q) is dense in R. We give several sufficient conditions for
the denseness of Λ(q) when q is a root of such a polynomial. In particular,
we prove that if q is not a Perron number or it has a conjugate α such
that q|α| < 1, then Λ(q) is dense in R.

1. Introduction and auxiliary results

Let q ∈ (1, 2) and put

Λn(q) =

{
n∑

k=0

akq
k | ak ∈ {−1, 0, 1}

}
,

and Λ(q) =
⋃

n≥1 Λn(q). (It is obvious that the sets Λn(q) are nested.) The

question we want to address is the topological structure of Λ(q). Is it dense?

discrete? mixed?

The first important result has been obtained by A. Garsia [11]: if q is a

Pisot number (an algebraic integer greater than 1 whose conjugates are less

than 1 in modulus), then Λ(q) is uniformly discrete. On the other hand, if

q does not satisfy an algebraic equation with coefficients 0,±1, then it is

a simple consequence of the pigeonhole principle that 0 is a limit point of

Λ(q) and thus, it is dense – see below.

Surprisingly little is known about the case when q is a root of a poly-

nomial with coefficients 0,±1. In this paper we study this case and give

two sufficient conditions for Λ(q) to be dense. These conditions are rather

general and cover a substantial subset of such q’s – see Theorems 2.1 and

2.4.
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Put

Yn(q) =

{
n∑

k=0

akq
k | ak ∈ {0, 1}

}
and Y (q) =

⋃
n≥1 Yn(q). The set Y (q) is discrete and we can write its ele-

ments in the ascending order:

Y (q) = {0 = y0(q) < y1(q) < y2(q) < . . . }.

Following [10], we define

l(q) = lim
n→∞

(yn+1(q)− yn(q)).

Theorem 1.1. ([6]) If 0 is a limit point of Λ(q), then Λ(q) is dense in R.

It is obvious that 0 is a limit point of Λ(q) if and only if l(q) = 0. Hence

follows

Corollary 1.2. The set Λ(q) is dense in R if and only if l(q) = 0.

The purpose of this paper is to find some wide classes of algebraic q for

which l(q) = 0.

Put for any β ∈ C,

Yn(β) =

{
n∑

k=0

akβ
k | ak ∈ {0, 1}, 0 ≤ k ≤ n

}
and zn(β) := #Yn(β). It is obvious that zn(β) ≤ 2n+1.

In order to estimate zn(β), it is useful to consider the set

Aλ :=

{
∞∑

k=0

akλ
k | ak ∈ {0, 1}, k ≥ 0

}
, where λ = β−1.

This is a well-known family of self-similar sets for λ in the open unit disc,

most of them “fractals,” studied in [2, 12, 17], and many other papers (see

also the book [1, 8.2]). Observe that Aλ is compact.

Lemma 1.3. (i) If λ ∈ C, with |λ| ∈
(

1
2
, 1
)
, then zn(λ) = #Yn(λ) ≥

|λ|−n−1 for all n.

(ii) If λ ∈ C, with 2−1/2 ≤ |λ| < 1, and |Reλ| ≤ |λ|2 − 1
2
, then zn(λ) ≥

|λ|−2(n+1) for all n.

Proof. By the definition of the set Aλ, we have for all n ≥ 0:

(1.1) Aλ =
⋃

z∈Yn(λ)

(z + λn+1Aλ).

(i) Suppose that the set Aλ is connected, and let u, v ∈ Aλ be such that

|u − v| = diam(Aλ). Then there exists a “chain” of distinct subsets Aj :=
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zj + λnAλ ⊂ Aλ, j = 1, . . . ,m, with zj ∈ Yn(λ), such that u ∈ A1, v ∈ Am

and Aj ∩ Aj+1 6= ∅ for all j ≤ m− 1. Therefore,

diam(Aλ) ≤
m∑

j=1

diam(Aj) = m · diam(λn+1Aλ)

≤ #Yn(λ)|λ|n+1diam(Aλ),

and the claim follows. If, on the other hand, Aλ is disconnected, then λAλ∩
(λAλ + 1) = ∅, see [2] or [1, Chapter 8.2]. In this case λ is not a zero

of a power series with coefficients {0,±1}, much less a polynomial, hence

zn(λ) = 2n+1 > |λ|−n−1 for all n.

(ii) We know from [17, Prop. 2.6 (i)] that Aλ has nonempty interior for all

λ in the open unit disc, such that 0 ≤ |Reλ| ≤ |λ|2 − 0.5. Then we have

from (1.1) for the Lebesgue measure L2:

L2(Aλ) ≤ #Yn(λ)L2(λn+1Aλ) = zn(λ) · |λ|2(n+1)L2(Aλ),

as desired. �

Note that the proof of Lemma 1.3 did not use that λ is non-real. Hence

we obtain the following result as a direct corollary:

Lemma 1.4. If q ∈ (1, 2), then zn(±q) ≥ Cqn for some C > 0.

Remarks 1.5. (i) Lemma 1.4 for +q was proved in [10], using the fact

that yn+1(q)− yn(q) ≤ 1 for all n and any q ∈ (1, 2).

(ii) With a bit more work one can show that in the setting of Lemma 1.3 (i)

we have zn(λ) ≥ Cn|λ|−n for some Cn ↑ ∞, assuming that λ is non-

real. However, it is not needed in this paper.

(iii) It follows from the results of [5, 13] that for any ϕ 6= 0, π, the set

Aλ has nonempty interior for λ = reiϕ, with r sufficiently close to

1, but it seems difficult to apply them in the absence of quantitave

estimates.

Lemma 1.6. If β ∈ C \ {0}, then zn(β) = zn(1/β).

Proof. Define φ : Yn(β) → Yn(1/β) as follows:

φ

(
n∑

k=0

akβ
k

)
=

n∑
k=0

an−k(1/β)k.

A relation
∑n

k=0 akβ
k =

∑n
k=0 bkβ

k is equivalent to
∑n

k=0 akβ
k−n =

∑n
k=0 bkβ

k−n,

which is in turn equivalent to φ
(∑n

k=0 akβ
k
)

= φ
(∑n

k=0 bkβ
k
)
. Thus, φ is a

bijection. �
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Lemma 1.7. Let q ∈ (1, 2); if zn(q) � qn (i.e., supn q
−nzn(q) = +∞), then

l(q) = 0.

Proof. Since
∑n

k=0 akq
k < qn+1/(q− 1), the result follows immediately from

the pigeonhole principle. �

Consequently, if q is not a root of a polynomial with coefficients 0,±1,

then zn(q) = 2n+1, and l(q) = 0 (which is well known, of course – see, e.g.,

[6]). If q is such a root, it is obvious that zn(q) � 2n, and the problem

becomes non-trivial. It is generally believed that l(q) = 0 unless q is Pisot,

but this is probably a very tough conjecture.

2. Main results

We need some preliminaries. Put

L(q) = lim
n→∞

(yn+1(q)− yn(q)).

Note that L(q) = 0 is equivalent to yn+1(q) − yn(q) → 0 as n → ∞. This

condition was studied in the seminal paper [10]; in particular, it was shown

that if q < 21/4 ≈ 1.18921 and q is not equal to the square root of the

second Pisot number ≈ 1.17485, then L(q) = 0. It was also shown in the

same paper that L(
√

2) = 0.

It is worth noting that the two conditions l(q) = 0 and L(q) = 0 are,

generally speaking, very different in nature; for instance, as we know, l(q) =

0 for all transcendental q, whereas L(q) = 1 for all q ≥ 1+
√

5
2

(see, e.g., [9])

and no q ∈
(√

2, 1+
√

5
2

)
is known for which L(q) = 0.

Throughout this section we assume that q ∈ (1, 2) is a root of a polyno-

mial with coefficients 0,±1. It is easy to show that in this case any conjugate

of q is less than 2 in modulus.

Finally, recall that an algebraic q > 1 is called a Perron number if each

of its conjugates is less than q in modulus.

Theorem 2.1. If q ∈ (1, 2) is not a Perron number, then l(q) = 0. If, in

addition, q <
√

2 and −q is not a conjugate of q, then L(q) = 0.

Proof. We first prove l(q) = 0. We have three cases.

Case 1. q has a real conjugate p and q < |p|. Since p is an algebraic

conjugate of q, it follows from the Galois theory that the map ψ : Yn(q) →
Yn(p) given by ψ (

∑n
i=0 aiq

i) =
∑n

i=0 aip
i, is a bijection. Hence zn(q) =

zn(p) ≥ C|p|n by Lemma 1.4 and zn(q) � qn. Now the claim follows from

Lemma 1.7.
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Case 2. q has a complex non-real conjugate p and q < |p|. This case is

similar to Case 1: zn(q) = zn(p) ≥ C|p|n by Lemma 1.3 (i) and zn(q) � qn.

Case 3. q has a conjugate p and q = |p|. Let f denote the minimal polyno-

mial for q. Then we have f(x) = g(xm) for some m ≥ 2 by [4]. Put β = qm.

We have

Ymk(q) = {a0 + a1β
1
m + a2β

2
m + · · ·+ amkβ

n | ai ∈ {0, 1}}

=
{
A1 + β

1
mA2 + β

2
mA3 + · · ·+ β

m−1
m Am | A1 ∈ Yk(β), Ai ∈ Yk−1(β), 2 ≤ i ≤ m

}
.

Observe that any relation of the form

A1 + β
1
mA2 + · · ·+ β

m−1
m Am = A′1 + β

1
mA′2 + · · ·+ β

m−1
m A′m

implies A1 = A′1, . . . , Am = A′m. Indeed, if q satisfies an equation B1 +

qB2 + ... + qm−1Bm = 0 with Bi ∈ Z[qm], then qe2πij/m satisfies the same

equation for j = 1, . . . ,m − 1, hence Bi = 0 for all i. Thus, zmk

(
β

1
m

)
=

zk(β) · (zk−1(β))m−1.

Now, if q ≥ 2
1
m , then β ≥ 2, so zk(β) = 2k+1, and we obtain from

the above argument that zn(q) ≥ C2n � qn. Otherwise zn(q) ≥ zn(β) ≥
Cβn � qn. Hence by Lemma 1.7, l(q) = 0.

Let us now prove the second part of the theorem. Suppose q <
√

2 is not

Perron and −q is not its conjugate; then q has a conjugate α 6= −q, with

|α| ≥ q. Thus, q2 has a conjugate α2, and |α|2 ≥ q2 with α2 6= q2. If |α| >√
2, then α2 (and, consequently, q2) is not a root of −1, 0, 1 polynomial.

Otherwise, we can apply the first part of this theorem to q2. In either case,

l(q2) = 0, whence by [9, Theorem 5], L(q) = 0. �

Remark 2.2. Stankov [18] has proved a similar result for the following set:

(2.1) A(q) =

{
n∑

k=0

akq
k | ak ∈ {−1, 1}, n ≥ 1

}
.

More precisely, he has shown that if A(q) is discrete, then all real conjugates

of q are of modulus strictly less than q.

Corollary 2.3. If q ∈ (1, 2) is the square root of a Pisot number and not

itself Pisot, then l(q) = 0.

Proof. If q =
√
β and β is Pisot, then either −q is a conjugate of q or q is

Pisot. �

Theorem 2.4. (i) Suppose q ∈ (1, 2) has a conjugate α such that

|α|q < 1. Then l(q) = 0 and, consequently, Λ(q) is dense in R.
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(ii) Suppose q ∈ (1, 2) has a non-real conjugate α such that |α|q = 1.

Then l(q) = 0.

If, in addition, q <
√

2 in either case, then L(q) = 0.

Proof. (i) As above, we have zn(q) = zn(α). On the other hand, by Lemma 1.6,

zn(α) = zn(1/α), and by Lemmas 1.4 and 1.3, zn(1/α) ≥ C ·(|1/α|)n. Hence

zn(q) ≥ C ·(|1/α|)n � qn, in view of |αq| < 1. Hence by Lemma 1.7, l(q) = 0.

If q <
√

2, then q2 has a conjugate α2, and q2|α|2 < 1. Hence l(q2) = 0,

whence L(q) = 0.

(ii) Denote α1 = q, α2 = α, and α3 = α. Since |α|q = 1 and α is non-

real, we have three conjugates satisfying α2
1α2α3 = 1. Smyth [16, Lemma

1] characterizes such situations, but it is easier for us to proceed directly.

The Galois group of the minimal polynomial for q is transitive, so there is

an automorphism of the Galois group mapping α1 to α2. We obtain that

α2
2αiαj = 1 for some distinct conjugates αi and αj of α1. But this implies

max{|αi|, |αj|} ≥ α1 = q, hence q is not a Perron number, and l(q) = 0 by

Theorem 2.1.

If q <
√

2, then q2|α2| = 1, and the first part of (ii) applies to q2, unless

α2 ∈ R. If this is the case, then α = ±i/q, whence the minimal polynomial

for q contains only powers divisible by 4. Hence the minimal polynomial for

q2 contains only even powers, which implies that −q2 is conjugate to q2,

whence q2 is not Perron, and l(q2) = 0. �

Remark 2.5. If |α|q = 1 and α is real, we do not know if l(q) = 0. In fact, this

includes the interesting (and probably, difficult) case of Salem numbers1.

Definition 2.6. We say that an algebraic q > 1 is anti-Pisot if it has only

one conjugate less than 1 in modulus and at least one conjugate greater

than 1 in modulus other than q itself.

Corollary 2.7. If q ∈ (1, 2) is a root of a −1, 0, 1 polynomial and is also

anti-Pisot, then l(q) = 0.

Proof. Let α = α1, α2, . . . , αk−1, q be all the conjugates of q. We have∣∣∣∏k−1
j=1 αj

∣∣∣ · q = 1, because q satisfies an algebraic equation with coefficients

0,±1, whence its minimal polynomial must have a constant term ±1.

Suppose |α| < 1; then it is clear than α ∈ R (since it is unique). If |α2| > 1

and |αj| ≥ 1 for j = 3, . . . , k − 1, then it is obvious that |α|q ≤ |α2|−1 < 1,

i.e., the condition of Theorem 2.4 (i) is satisfied. �

1Recall that an algebraic number q > 1 is called a Salem number if all its conjugates
have absolute value no greater than 1, and at least one has absolute value exactly 1.
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3. Examples

Example 3.1. Let q ≈ 1.22074 be the positive root of x4 = x + 1. Then

q has a single conjugate α ≈ −0.72449 inside the open unit disc and no

conjugates of modulus 1, whence q is anti-Pisot, and by Corollary 2.7, l(q) =

0. Furthermore, q <
√

2, whence L(q) = 0 as well.

Note that q > 21/4, so we cannot derive the latter claim immediately

from [10, Theorem IV].

Example 3.2. An example of q with a real conjugate α which is not anti-

Pisot but still satisfies the condition of Theorem 2.4 (i), is the appropriate

root of x5 = x4 + x2 + x− 1. Here q ≈ 1.52626 and α ≈ 0.59509.

Example 3.3. For the equation x5 = x4 − x2 + x+ 1 we have q ≈ 1.26278

and |α| ≈ 0.74090 so |α|q ≈ 0.93559 (and α /∈ R). By Theorem 2.4 (i),

L(q) = 0.

Example 3.4. For the equation x10 = x9+x8+x7+x6+x5−x4−x3−x2+x−1

we have q ≈ 1.52501. Among its conjugates is α ≈ 0.3741 + 0.52404i with

|α| ≈ 0.64387 < 1/q = 0.65574, so again l(q) = 0 by Theorem 2.4 (i). Note

that q >
√

2 so we cannot claim L(q) = 0.

Example 3.5. The following example illustrates Theorem 2.4 (ii). Let q ≈
1.19863 be the largest root of x12 = x9 + x6 + x3 − 1; then α = ζq−1 is a

root of this equation as well, where ζ is any complex non-real cubic root

of unity. Hence q|α| = 1, and Theorem 2.4 (ii) applies, i.e., L(q) = 0. Note

that q = 3
√
β, where β is a quartic Salem number.

Example 3.6. For the equation x11 = x10 + x9 − x6 + x4 − x2 − 1 we have

q ≈ 1.5006. Among its conjugates is λ ≈ 0.02625 + 0.7414i. Theorem 2.4

does not apply, but we can use Lemma 1.3 (ii) to obtain

zn(q) = zn(λ) ≥ |λ|−2(n+1) ≈ 1.81696n+1 � qn,

which implies that l(q) = 0. Note that Lemma 1.3 (ii) applies, because

0.02625 ≈ Reλ < |λ|2 − 1
2
≈ 0.05037.

Example 3.7. Consider the equation x18 = −x16+x14+x11+x10+· · ·+x+1

(no powers missing between x10 and 1). It has a root q ≈ 1.22289, and the

largest in modulus conjugates are u, u approximately equal to −.03958 ±
1.3109i. Then Theorem 2.1 implies L(q) = 0.

It is worth mentioning that there is another way to obtain this result.

Consider q2 and its conjugates u2, u2. We claim that although |u2| < 2, u2,
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and hence q2, is not a zero of a −1, 0, 1 polynomial (whence l(q2) = 0, which

implies L(q) = 0).

Indeed, if it were, then q−2, u−2, (u)−2 would also be zeros of such a

polynomial. However, the product of these three numbers is ≈ 0.226024, so

this is impossible, in view of the following

Claim. Suppose z1, z2, z3 are three different roots of a −1, 0, 1 polynomial.

Then |z1z2z3| ≥ 1/2 · (4/3)−3/2 = 0.32476 . . .

This claim is a slight generalization of [3, Theorem 2], see [15, Theorem

2.4].

Example 3.8. Finally, an example of q for which none of our criteria works

is the real root of x5 = x4 + x3 − x + 1. Here q ≈ 1.54991, and the other

four conjugates are non-real, with the moduli ≈ 1.04492 and ≈ 0.76871

respectively.

Another example is any Salem number q ∈ (1, 2), for instance q ≈
1.72208 which is a root of x4 = x3 + x2 + x − 1. (Which is of course none

other than β from Example 3.5.)

4. Final remarks and open problems

4.1. Our first remark concerns the case q ∈ (m,m + 1) with m ≥ 2. Here

the natural definition for Λ(q) is

Λ(q) =

{
n∑

k=0

akq
k | ak ∈ {−m,−m+ 1, . . . ,m− 1,m}, n ≥ 1

}
.

Theorem 2.4 holds for this case, provided α ∈ R (as well as Case 1 of

Theorem 2.1)— the proof is essentially the same. The case of non-real α is

less straightforward, since there is no ready-to-apply complex machinery for

m ≥ 2. (Basically, we need that if α is a zero of a polynomial with coefficients

in {−m, . . . ,m}, then the attractor of the iterated function system {αz +

j}m
j=0 in the complex plane is connected. This can be verified for m = 2, 3

but we do not know if this is true in general.) Note also that an analogue

of Theorem 1.1 for m ≥ 2 has been proved in [7].

4.2. We do not know whether the extra condition that −q is not a conjugate

of q is really necessary in the second claim of Theorem 2.1. In particular, is

it true that L(
√
ϕ) = 0 if ϕ is the golden ratio?

4.3. In [14, Proposition 1.2] it is shown that if q <
√

2 and q2 is not a root

of a polynomial with coefficients 0,±1, then the set A(q) given by (2.1) is

dense in R. In fact, what the authors use in their proof is the condition
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l(q2) = 0. Consequently, Theorems 2.1 and 2.4 provide sufficient conditions

for A(q) to be dense in case when q2 does satisfy an algebraic equation with

coefficients 0,±1.

4.4. Is l(q) = 0 for q in Example 3.8 and suchlike?

4.5. All our criteria yield that l(q) = 0 implies L(q) = 0 for q <
√

2. Is this

really the case?

Acknowledgement. We are grateful to Martijn de Vries for indicating the

papers [6, 7].

References

[1] M. F. Barnsley, Fractals Everywhere, Academic Press, 1988.
[2] M. F. Barnsley and A. N. Harrington, A Mandelbrot set for pairs of linear maps,

Physica D 15 (1985), 421–432.
[3] F. Beaucoup, P. Borwein, D. Boyd and C. Pinner, Multiple roots of [−1, 1] power

series, J. London Math. Soc. (2) 57 (1998), 135–147.
[4] D. Boyd, Irreducible polynomials with many roots of equal modulus, Acta Arith. 68

(1994), 85–88.
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