ON THE TOPOLOGY OF SUMS IN POWERS OF AN ALGEBRAIC NUMBER

NIKITA SIDOROV AND BORIS SOLOMYAK

ABSTRACT. Let 1 < q < 2 and

$$\Lambda(q) = \left\{ \sum_{k=0}^{n} a_k q^k \mid a_k \in \{-1, 0, 1\}, \ n \ge 1 \right\}.$$

It is well known that if q is not a root of a polynomial with coefficients $0, \pm 1$, then $\Lambda(q)$ is dense in \mathbb{R} . We give several sufficient conditions for the denseness of $\Lambda(q)$ when q is a root of such a polynomial. In particular, we prove that if q is not a Perron number or it has a conjugate α such that $q|\alpha| < 1$, then $\Lambda(q)$ is dense in \mathbb{R} .

1. INTRODUCTION AND AUXILIARY RESULTS

Let $q \in (1,2)$ and put

$$\Lambda_n(q) = \left\{ \sum_{k=0}^n a_k q^k \mid a_k \in \{-1, 0, 1\} \right\},\,$$

and $\Lambda(q) = \bigcup_{n \ge 1} \Lambda_n(q)$. (It is obvious that the sets $\Lambda_n(q)$ are nested.) The question we want to address is the topological structure of $\Lambda(q)$. Is it dense? discrete? mixed?

The first important result has been obtained by A. Garsia [11]: if q is a Pisot number (an algebraic integer greater than 1 whose conjugates are less than 1 in modulus), then $\Lambda(q)$ is uniformly discrete. On the other hand, if q does not satisfy an algebraic equation with coefficients $0, \pm 1$, then it is a simple consequence of the pigeonhole principle that 0 is a limit point of $\Lambda(q)$ and thus, it is dense – see below.

Surprisingly little is known about the case when q is a root of a polynomial with coefficients $0, \pm 1$. In this paper we study this case and give two sufficient conditions for $\Lambda(q)$ to be dense. These conditions are rather general and cover a substantial subset of such q's – see Theorems 2.1 and 2.4.

Date: September 18, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11J17; Secondary 11K16, 11R06.

Key words and phrases. Algebraic number, Perron number, Salem number, power sum.

Put

$$Y_n(q) = \left\{ \sum_{k=0}^n a_k q^k \mid a_k \in \{0, 1\} \right\}$$

and $Y(q) = \bigcup_{n \ge 1} Y_n(q)$. The set Y(q) is discrete and we can write its elements in the ascending order:

$$Y(q) = \{0 = y_0(q) < y_1(q) < y_2(q) < \dots \}.$$

Following [10], we define

$$l(q) = \lim_{n \to \infty} (y_{n+1}(q) - y_n(q)).$$

Theorem 1.1. ([6]) If 0 is a limit point of $\Lambda(q)$, then $\Lambda(q)$ is dense in \mathbb{R} .

It is obvious that 0 is a limit point of $\Lambda(q)$ if and only if l(q) = 0. Hence follows

Corollary 1.2. The set $\Lambda(q)$ is dense in \mathbb{R} if and only if l(q) = 0.

The purpose of this paper is to find some wide classes of algebraic q for which l(q) = 0.

Put for any $\beta \in \mathbb{C}$,

$$Y_n(\beta) = \left\{ \sum_{k=0}^n a_k \beta^k \mid a_k \in \{0, 1\}, \ 0 \le k \le n \right\}$$

and $z_n(\beta) := \#Y_n(\beta)$. It is obvious that $z_n(\beta) \le 2^{n+1}$.

In order to estimate $z_n(\beta)$, it is useful to consider the set

$$A_{\lambda} := \left\{ \sum_{k=0}^{\infty} a_k \lambda^k \mid a_k \in \{0,1\}, \ k \ge 0 \right\}, \text{ where } \lambda = \beta^{-1}.$$

This is a well-known family of self-similar sets for λ in the open unit disc, most of them "fractals," studied in [2, 12, 17], and many other papers (see also the book [1, 8.2]). Observe that A_{λ} is compact.

Lemma 1.3. (i) If $\lambda \in \mathbb{C}$, with $|\lambda| \in (\frac{1}{2}, 1)$, then $z_n(\lambda) = \#Y_n(\lambda) \ge |\lambda|^{-n-1}$ for all n.

(ii) If
$$\lambda \in \mathbb{C}$$
, with $2^{-1/2} \leq |\lambda| < 1$, and $|\operatorname{Re} \lambda| \leq |\lambda|^2 - \frac{1}{2}$, then $z_n(\lambda) \geq |\lambda|^{-2(n+1)}$ for all n .

Proof. By the definition of the set A_{λ} , we have for all $n \geq 0$:

(1.1)
$$A_{\lambda} = \bigcup_{z \in Y_n(\lambda)} (z + \lambda^{n+1} A_{\lambda})$$

(i) Suppose that the set A_{λ} is connected, and let $u, v \in A_{\lambda}$ be such that $|u - v| = \operatorname{diam}(A_{\lambda})$. Then there exists a "chain" of distinct subsets $A_j :=$

 $\mathbf{2}$

 $z_j + \lambda^n A_\lambda \subset A_\lambda$, $j = 1, \ldots, m$, with $z_j \in Y_n(\lambda)$, such that $u \in A_1, v \in A_m$ and $A_j \cap A_{j+1} \neq \emptyset$ for all $j \leq m - 1$. Therefore,

$$\operatorname{diam}(A_{\lambda}) \leq \sum_{j=1}^{m} \operatorname{diam}(A_{j}) = m \cdot \operatorname{diam}(\lambda^{n+1}A_{\lambda})$$
$$\leq \#Y_{n}(\lambda)|\lambda|^{n+1}\operatorname{diam}(A_{\lambda}),$$

and the claim follows. If, on the other hand, A_{λ} is disconnected, then $\lambda A_{\lambda} \cap (\lambda A_{\lambda} + 1) = \emptyset$, see [2] or [1, Chapter 8.2]. In this case λ is not a zero of a power series with coefficients $\{0, \pm 1\}$, much less a polynomial, hence $z_n(\lambda) = 2^{n+1} > |\lambda|^{-n-1}$ for all n.

(ii) We know from [17, Prop. 2.6 (i)] that A_{λ} has nonempty interior for all λ in the open unit disc, such that $0 \leq |\text{Re }\lambda| \leq |\lambda|^2 - 0.5$. Then we have from (1.1) for the Lebesgue measure \mathcal{L}^2 :

$$\mathcal{L}^{2}(A_{\lambda}) \leq \#Y_{n}(\lambda)\mathcal{L}^{2}(\lambda^{n+1}A_{\lambda}) = z_{n}(\lambda) \cdot |\lambda|^{2(n+1)}\mathcal{L}^{2}(A_{\lambda}),$$

as desired.

Note that the proof of Lemma 1.3 did not use that λ is non-real. Hence we obtain the following result as a direct corollary:

Lemma 1.4. If $q \in (1,2)$, then $z_n(\pm q) \ge Cq^n$ for some C > 0.

- Remarks 1.5. (i) Lemma 1.4 for +q was proved in [10], using the fact that $y_{n+1}(q) y_n(q) \le 1$ for all n and any $q \in (1, 2)$.
 - (ii) With a bit more work one can show that in the setting of Lemma 1.3 (i) we have $z_n(\lambda) \ge C_n |\lambda|^{-n}$ for some $C_n \uparrow \infty$, assuming that λ is non-real. However, it is not needed in this paper.
 - (iii) It follows from the results of [5, 13] that for any $\varphi \neq 0, \pi$, the set A_{λ} has nonempty interior for $\lambda = re^{i\varphi}$, with r sufficiently close to 1, but it seems difficult to apply them in the absence of quantitave estimates.

Lemma 1.6. If $\beta \in \mathbb{C} \setminus \{0\}$, then $z_n(\beta) = z_n(1/\beta)$.

Proof. Define $\phi: Y_n(\beta) \to Y_n(1/\beta)$ as follows:

$$\phi\left(\sum_{k=0}^{n} a_k \beta^k\right) = \sum_{k=0}^{n} a_{n-k} (1/\beta)^k.$$

A relation $\sum_{k=0}^{n} a_k \beta^k = \sum_{k=0}^{n} b_k \beta^k$ is equivalent to $\sum_{k=0}^{n} a_k \beta^{k-n} = \sum_{k=0}^{n} b_k \beta^{k-n}$, which is in turn equivalent to $\phi\left(\sum_{k=0}^{n} a_k \beta^k\right) = \phi\left(\sum_{k=0}^{n} b_k \beta^k\right)$. Thus, ϕ is a bijection.

Lemma 1.7. Let $q \in (1,2)$; if $z_n(q) \gg q^n$ (i.e., $\sup_n q^{-n} z_n(q) = +\infty$), then l(q) = 0.

Proof. Since $\sum_{k=0}^{n} a_k q^k < q^{n+1}/(q-1)$, the result follows immediately from the pigeonhole principle.

Consequently, if q is not a root of a polynomial with coefficients $0, \pm 1$, then $z_n(q) = 2^{n+1}$, and l(q) = 0 (which is well known, of course – see, e.g., [6]). If q is such a root, it is obvious that $z_n(q) \ll 2^n$, and the problem becomes non-trivial. It is generally believed that l(q) = 0 unless q is Pisot, but this is probably a very tough conjecture.

2. Main results

We need some preliminaries. Put

$$L(q) = \overline{\lim_{n \to \infty}} (y_{n+1}(q) - y_n(q)).$$

Note that L(q) = 0 is equivalent to $y_{n+1}(q) - y_n(q) \to 0$ as $n \to \infty$. This condition was studied in the seminal paper [10]; in particular, it was shown that if $q < 2^{1/4} \approx 1.18921$ and q is not equal to the square root of the second Pisot number ≈ 1.17485 , then L(q) = 0. It was also shown in the same paper that $L(\sqrt{2}) = 0$.

It is worth noting that the two conditions l(q) = 0 and L(q) = 0 are, generally speaking, very different in nature; for instance, as we know, l(q) = 0 for all transcendental q, whereas L(q) = 1 for all $q \ge \frac{1+\sqrt{5}}{2}$ (see, e.g., [9]) and no $q \in (\sqrt{2}, \frac{1+\sqrt{5}}{2})$ is known for which L(q) = 0.

Throughout this section we assume that $q \in (1, 2)$ is a root of a polynomial with coefficients $0, \pm 1$. It is easy to show that in this case any conjugate of q is less than 2 in modulus.

Finally, recall that an algebraic q > 1 is called a *Perron number* if each of its conjugates is less than q in modulus.

Theorem 2.1. If $q \in (1,2)$ is not a Perron number, then l(q) = 0. If, in addition, $q < \sqrt{2}$ and -q is not a conjugate of q, then L(q) = 0.

Proof. We first prove l(q) = 0. We have three cases.

Case 1. q has a real conjugate p and q < |p|. Since p is an algebraic conjugate of q, it follows from the Galois theory that the map $\psi: Y_n(q) \to Y_n(p)$ given by $\psi(\sum_{i=0}^n a_i q^i) = \sum_{i=0}^n a_i p^i$, is a bijection. Hence $z_n(q) = z_n(p) \ge C|p|^n$ by Lemma 1.4 and $z_n(q) \gg q^n$. Now the claim follows from Lemma 1.7.

Case 2. q has a complex non-real conjugate p and q < |p|. This case is similar to Case 1: $z_n(q) = z_n(p) \ge C|p|^n$ by Lemma 1.3 (i) and $z_n(q) \gg q^n$. **Case 3.** q has a conjugate p and q = |p|. Let f denote the minimal polynomial for q. Then we have $f(x) = g(x^m)$ for some $m \ge 2$ by [4]. Put $\beta = q^m$. We have

$$Y_{mk}(q) = \{a_0 + a_1\beta^{\frac{1}{m}} + a_2\beta^{\frac{2}{m}} + \dots + a_{mk}\beta^n \mid a_i \in \{0, 1\}\}$$
$$= \{A_1 + \beta^{\frac{1}{m}}A_2 + \beta^{\frac{2}{m}}A_3 + \dots + \beta^{\frac{m-1}{m}}A_m \mid A_1 \in Y_k(\beta), A_i \in Y_{k-1}(\beta), \ 2 \le i \le m\}.$$

Observe that any relation of the form

$$A_1 + \beta^{\frac{1}{m}} A_2 + \dots + \beta^{\frac{m-1}{m}} A_m = A'_1 + \beta^{\frac{1}{m}} A'_2 + \dots + \beta^{\frac{m-1}{m}} A'_m$$

implies $A_1 = A'_1, \ldots, A_m = A'_m$. Indeed, if q satisfies an equation $B_1 + qB_2 + \ldots + q^{m-1}B_m = 0$ with $B_i \in \mathbb{Z}[q^m]$, then $qe^{2\pi i j/m}$ satisfies the same equation for $j = 1, \ldots, m-1$, hence $B_i = 0$ for all i. Thus, $z_{mk}(\beta^{\frac{1}{m}}) = z_k(\beta) \cdot (z_{k-1}(\beta))^{m-1}$.

Now, if $q \geq 2^{\frac{1}{m}}$, then $\beta \geq 2$, so $z_k(\beta) = 2^{k+1}$, and we obtain from the above argument that $z_n(q) \geq C2^n \gg q^n$. Otherwise $z_n(q) \geq z_n(\beta) \geq C\beta^n \gg q^n$. Hence by Lemma 1.7, l(q) = 0.

Let us now prove the second part of the theorem. Suppose $q < \sqrt{2}$ is not Perron and -q is not its conjugate; then q has a conjugate $\alpha \neq -q$, with $|\alpha| \ge q$. Thus, q^2 has a conjugate α^2 , and $|\alpha|^2 \ge q^2$ with $\alpha^2 \neq q^2$. If $|\alpha| > \sqrt{2}$, then α^2 (and, consequently, q^2) is not a root of -1, 0, 1 polynomial. Otherwise, we can apply the first part of this theorem to q^2 . In either case, $l(q^2) = 0$, whence by [9, Theorem 5], L(q) = 0.

Remark 2.2. Stankov [18] has proved a similar result for the following set:

(2.1)
$$\mathcal{A}(q) = \left\{ \sum_{k=0}^{n} a_k q^k \mid a_k \in \{-1, 1\}, \ n \ge 1 \right\}.$$

More precisely, he has shown that if $\mathcal{A}(q)$ is discrete, then all *real* conjugates of q are of modulus strictly less than q.

Corollary 2.3. If $q \in (1,2)$ is the square root of a Pisot number and not itself Pisot, then l(q) = 0.

Proof. If $q = \sqrt{\beta}$ and β is Pisot, then either -q is a conjugate of q or q is Pisot.

Theorem 2.4. (i) Suppose $q \in (1,2)$ has a conjugate α such that $|\alpha|q < 1$. Then l(q) = 0 and, consequently, $\Lambda(q)$ is dense in \mathbb{R} .

 (ii) Suppose q ∈ (1,2) has a non-real conjugate α such that |α|q = 1. Then l(q) = 0.

If, in addition, $q < \sqrt{2}$ in either case, then L(q) = 0.

Proof. (i) As above, we have $z_n(q) = z_n(\alpha)$. On the other hand, by Lemma 1.6, $z_n(\alpha) = z_n(1/\alpha)$, and by Lemmas 1.4 and 1.3, $z_n(1/\alpha) \ge C \cdot (|1/\alpha|)^n$. Hence $z_n(q) \ge C \cdot (|1/\alpha|)^n \gg q^n$, in view of $|\alpha q| < 1$. Hence by Lemma 1.7, l(q) = 0. If $q < \sqrt{2}$, then q^2 has a conjugate α^2 , and $q^2 |\alpha|^2 < 1$. Hence $l(q^2) = 0$,

whence L(q) = 0.

(ii) Denote $\alpha_1 = q, \alpha_2 = \alpha$, and $\alpha_3 = \overline{\alpha}$. Since $|\alpha|q = 1$ and α is nonreal, we have three conjugates satisfying $\alpha_1^2 \alpha_2 \alpha_3 = 1$. Smyth [16, Lemma 1] characterizes such situations, but it is easier for us to proceed directly. The Galois group of the minimal polynomial for q is transitive, so there is an automorphism of the Galois group mapping α_1 to α_2 . We obtain that $\alpha_2^2 \alpha_i \alpha_j = 1$ for some distinct conjugates α_i and α_j of α_1 . But this implies $\max\{|\alpha_i|, |\alpha_j|\} \ge \alpha_1 = q$, hence q is not a Perron number, and l(q) = 0 by Theorem 2.1.

If $q < \sqrt{2}$, then $q^2 |\alpha^2| = 1$, and the first part of (ii) applies to q^2 , unless $\alpha^2 \in \mathbb{R}$. If this is the case, then $\alpha = \pm i/q$, whence the minimal polynomial for q contains only powers divisible by 4. Hence the minimal polynomial for q^2 contains only even powers, which implies that $-q^2$ is conjugate to q^2 , whence q^2 is not Perron, and $l(q^2) = 0$.

Remark 2.5. If $|\alpha|q = 1$ and α is real, we do not know if l(q) = 0. In fact, this includes the interesting (and probably, difficult) case of Salem numbers¹.

Definition 2.6. We say that an algebraic q > 1 is *anti-Pisot* if it has only one conjugate less than 1 in modulus and at least one conjugate greater than 1 in modulus other than q itself.

Corollary 2.7. If $q \in (1,2)$ is a root of a - 1, 0, 1 polynomial and is also anti-Pisot, then l(q) = 0.

Proof. Let $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_{k-1}, q$ be all the conjugates of q. We have $\left|\prod_{j=1}^{k-1} \alpha_j\right| \cdot q = 1$, because q satisfies an algebraic equation with coefficients $0, \pm 1$, whence its minimal polynomial must have a constant term ± 1 .

Suppose $|\alpha| < 1$; then it is clear than $\alpha \in \mathbb{R}$ (since it is unique). If $|\alpha_2| > 1$ and $|\alpha_j| \ge 1$ for $j = 3, \ldots, k - 1$, then it is obvious that $|\alpha|q \le |\alpha_2|^{-1} < 1$, i.e., the condition of Theorem 2.4 (i) is satisfied. \Box

¹Recall that an algebraic number q > 1 is called a *Salem number* if all its conjugates have absolute value no greater than 1, and at least one has absolute value exactly 1.

3. Examples

Example 3.1. Let $q \approx 1.22074$ be the positive root of $x^4 = x + 1$. Then q has a single conjugate $\alpha \approx -0.72449$ inside the open unit disc and no conjugates of modulus 1, whence q is anti-Pisot, and by Corollary 2.7, l(q) = 0. Furthermore, $q < \sqrt{2}$, whence L(q) = 0 as well.

Note that $q > 2^{1/4}$, so we cannot derive the latter claim immediately from [10, Theorem IV].

Example 3.2. An example of q with a real conjugate α which is not anti-Pisot but still satisfies the condition of Theorem 2.4 (i), is the appropriate root of $x^5 = x^4 + x^2 + x - 1$. Here $q \approx 1.52626$ and $\alpha \approx 0.59509$.

Example 3.3. For the equation $x^5 = x^4 - x^2 + x + 1$ we have $q \approx 1.26278$ and $|\alpha| \approx 0.74090$ so $|\alpha|q \approx 0.93559$ (and $\alpha \notin \mathbb{R}$). By Theorem 2.4 (i), L(q) = 0.

Example 3.4. For the equation $x^{10} = x^9 + x^8 + x^7 + x^6 + x^5 - x^4 - x^3 - x^2 + x - 1$ we have $q \approx 1.52501$. Among its conjugates is $\alpha \approx 0.3741 + 0.52404i$ with $|\alpha| \approx 0.64387 < 1/q = 0.65574$, so again l(q) = 0 by Theorem 2.4 (i). Note that $q > \sqrt{2}$ so we cannot claim L(q) = 0.

Example 3.5. The following example illustrates Theorem 2.4 (ii). Let $q \approx 1.19863$ be the largest root of $x^{12} = x^9 + x^6 + x^3 - 1$; then $\alpha = \zeta q^{-1}$ is a root of this equation as well, where ζ is any complex non-real cubic root of unity. Hence $q|\alpha| = 1$, and Theorem 2.4 (ii) applies, i.e., L(q) = 0. Note that $q = \sqrt[3]{\beta}$, where β is a quartic Salem number.

Example 3.6. For the equation $x^{11} = x^{10} + x^9 - x^6 + x^4 - x^2 - 1$ we have $q \approx 1.5006$. Among its conjugates is $\lambda \approx 0.02625 + 0.7414i$. Theorem 2.4 does not apply, but we can use Lemma 1.3 (ii) to obtain

$$z_n(q) = z_n(\lambda) \ge |\lambda|^{-2(n+1)} \approx 1.81696^{n+1} \gg q^n,$$

which implies that l(q) = 0. Note that Lemma 1.3 (ii) applies, because $0.02625 \approx \text{Re } \lambda < |\lambda|^2 - \frac{1}{2} \approx 0.05037.$

Example 3.7. Consider the equation $x^{18} = -x^{16} + x^{14} + x^{11} + x^{10} + \cdots + x + 1$ (no powers missing between x^{10} and 1). It has a root $q \approx 1.22289$, and the largest in modulus conjugates are u, \overline{u} approximately equal to $-.03958 \pm 1.3109i$. Then Theorem 2.1 implies L(q) = 0.

It is worth mentioning that there is another way to obtain this result. Consider q^2 and its conjugates u^2, \overline{u}^2 . We claim that although $|u^2| < 2, u^2$, and hence q^2 , is not a zero of a -1, 0, 1 polynomial (whence $l(q^2) = 0$, which implies L(q) = 0).

Indeed, if it were, then $q^{-2}, u^{-2}, (\overline{u})^{-2}$ would also be zeros of such a polynomial. However, the product of these three numbers is ≈ 0.226024 , so this is impossible, in view of the following

Claim. Suppose z_1, z_2, z_3 are three different roots of a - 1, 0, 1 polynomial. Then $|z_1 z_2 z_3| \ge 1/2 \cdot (4/3)^{-3/2} = 0.32476...$

This claim is a slight generalization of [3, Theorem 2], see [15, Theorem 2.4].

Example 3.8. Finally, an example of q for which none of our criteria works is the real root of $x^5 = x^4 + x^3 - x + 1$. Here $q \approx 1.54991$, and the other four conjugates are non-real, with the moduli ≈ 1.04492 and ≈ 0.76871 respectively.

Another example is any Salem number $q \in (1, 2)$, for instance $q \approx 1.72208$ which is a root of $x^4 = x^3 + x^2 + x - 1$. (Which is of course none other than β from Example 3.5.)

4. FINAL REMARKS AND OPEN PROBLEMS

4.1. Our first remark concerns the case $q \in (m, m + 1)$ with $m \ge 2$. Here the natural definition for $\Lambda(q)$ is

$$\Lambda(q) = \left\{ \sum_{k=0}^{n} a_k q^k \mid a_k \in \{-m, -m+1, \dots, m-1, m\}, \ n \ge 1 \right\}.$$

Theorem 2.4 holds for this case, provided $\alpha \in \mathbb{R}$ (as well as Case 1 of Theorem 2.1)— the proof is essentially the same. The case of non-real α is less straightforward, since there is no ready-to-apply complex machinery for $m \geq 2$. (Basically, we need that if α is a zero of a polynomial with coefficients in $\{-m, \ldots, m\}$, then the attractor of the iterated function system $\{\alpha z + j\}_{j=0}^{m}$ in the complex plane is connected. This can be verified for m = 2, 3 but we do not know if this is true in general.) Note also that an analogue of Theorem 1.1 for $m \geq 2$ has been proved in [7].

4.2. We do not know whether the extra condition that -q is not a conjugate of q is really necessary in the second claim of Theorem 2.1. In particular, is it true that $L(\sqrt{\varphi}) = 0$ if φ is the golden ratio?

4.3. In [14, Proposition 1.2] it is shown that if $q < \sqrt{2}$ and q^2 is not a root of a polynomial with coefficients $0, \pm 1$, then the set $\mathcal{A}(q)$ given by (2.1) is dense in \mathbb{R} . In fact, what the authors use in their proof is the condition

 $l(q^2) = 0$. Consequently, Theorems 2.1 and 2.4 provide sufficient conditions for $\mathcal{A}(q)$ to be dense in case when q^2 does satisfy an algebraic equation with coefficients $0, \pm 1$.

4.4. Is l(q) = 0 for q in Example 3.8 and suchlike?

4.5. All our criteria yield that l(q) = 0 implies L(q) = 0 for $q < \sqrt{2}$. Is this really the case?

Acknowledgement. We are grateful to Martijn de Vries for indicating the papers [6, 7].

References

- [1] M. F. Barnsley, Fractals Everywhere, Academic Press, 1988.
- [2] M. F. Barnsley and A. N. Harrington, A Mandelbrot set for pairs of linear maps, Physica D 15 (1985), 421–432.
- [3] F. Beaucoup, P. Borwein, D. Boyd and C. Pinner, Multiple roots of [-1,1] power series, J. London Math. Soc. (2) 57 (1998), 135–147.
- [4] D. Boyd, Irreducible polynomials with many roots of equal modulus, Acta Arith. 68 (1994), 85–88.
- [5] Z. Daróczy and I. Kátai, Generalized number systems in the complex plane, Acta Math. Hung. 51 (1988), 409–416.
- [6] V. Drobot, On sums of powers of a number, Amer. Math. Monthly 80 (1973), 42-44.
- [7] V. Drobot and S. McDonald, Approximation properties of polynomials with bounded integer coefficients, Pacific J. Math. 86 (1980), 447–450.
- [8] P. Erdős, I. Joó, and V. Komornik, Characterization of the unique expansions $1 = \sum_{i=1}^{\infty} q^{-n_i}$ and related problems, Bull. Soc. Math. Fr. **118** (1990), 377–390.
- [9] P. Erdős, I. Joó and V. Komornik, On the sequence of numbers of the form $\varepsilon_0 + \varepsilon_1 q + \cdots + \varepsilon_n q^n, \varepsilon_i \in \{0, 1\}$, Acta Arith. 83 (1998), 201–210.
- [10] P. Erdős and V. Komornik, Developments in non-integer bases, Acta Math. Hung. 79 (1998), 57–83.
- [11] A. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409–432.
- [12] K.-H. Indlekofer, A. Járai, and I. Kátai, On some properties of attractors generated by iterated function systems, Acta Sci. Math. (Szeged) 60 (1995), 411–427.
- [13] V. Komornik and P. Loreti, Expansions in complex bases, Canad. Math. Bull. 50 (2007), 399–408.
- [14] Y. Peres and B. Solomyak, Approximation by polynomials with coefficients ±1, J. Number Theory 84 (2000), 185–198.
- [15] P. Shmerkin, Overlapping self-affine sets, Indiana Univ. Math. J. 55 (2006), 1291– 1332.
- [16] C. J. Smyth, Conjugate algebraic numbers on conics, Acta Arith. 40 (1982), 333–346.
- [17] B. Solomyak and H. Xu, On the 'Mandelbrot set' for a pair of linear maps and complex Bernoulli convolutions, Nonlinearity 16 (2003), 1733–1749.
- [18] D. Stankov, On spectra of neither Pisot nor Salem algebraic integers, Monatsh. Math., DOI 10.1007/s00605-008-0048-0.

School of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom. E-mail: sidorov@manchester.ac.uk

BOX 354350, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195, USA. E-MAIL: SOLOMYAK@MATH.WASHINGTON.EDU