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Copyright q 2012 M. Tamer Şenel. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The oscillation of solutions of the second-order nonlinear dynamic equation (r(t)(xΔ(t))γ )Δ +
p(t)(xΔ(t))γ + f(t, x(g(t))) = 0, with damping on an arbitrary time scale T, is investigated. The
generalized Riccati transformation is applied for the study of the Kamenev-type oscillation criteria
for this nonlinear dynamic equation. Several new sufficient conditions for oscillatory solutions of
this equation are obtained.

1. Introduction

Much recent attention has been given to dynamic equations on time scales, or measure chains,
and we refer the reader to the landmark paper of Hilger [1] for a comprehensive treatment
of the subject. Since then, several authors have expounded on various aspects of this new
theory; see the survey paper by Agarwal et al. [2]. A book on the subject of time scales by
Bohner and Peterson [3] also summarizes and organizes much of the time scale calculus.

A time scale T is an arbitrary nonempty closed subset of the real numbers R. The
forward and the backward jump operators on any time scale T are defined by σ(t) := inf{s ∈
T : s > t}, ρ(t) := sup{s ∈ T : s < t}. A point t ∈ T, t > infT, is said to be left-dense if ρ(t) = t,
right dense if t < supT and σ(t) = t, left scattered if ρ(t) < t, and right scattered if σ(t) > t. The
graininess function μ for a time scale T is defined by μ(t) := σ(t)−t. For a function f : T → R

the (delta) derivative is defined by

fΔ(t) =
f(σ(t)) − f(t)

σ(t) − t
, (1.1)

if f is continuous at t and t is right scattered. If t is not right scattered, then the derivative is



2 Abstract and Applied Analysis

defined by

fΔ(t) = lim
s→ t+

f(σ(t)) − f(s)
σ(t) − s

= lim
s→ t+

f(t) − f(s)
t − s

, (1.2)

provided this limit exists. A function f : [a, b] → R is said to be right-dense continuous if it
is right continuous at each right-dense point and there exists a finite left limit at all left-dense
points, and f is said to be differentiable if its derivative exists. A useful formula dealing with
the time scale is that

fσ = f(σ(t)) = f(t) + μ(t)fΔ(t). (1.3)

Wewill make use of the following product and quotient rules for the derivative of the product
fg and the quotient f/g (where ggσ /= 0) of two differentiable functions f and g:

(
fg
)Δ = fΔg + fσgΔ = fgΔ + fΔgσ,
(
f

g

)Δ

=
fΔg − fgΔ

ggσ
.

(1.4)

The integration by parts formula is

∫b

a

fΔ(t)g(t)Δt = f(b)g(b) − f(a)g(a) −
∫b

a

fσ(t)gΔ(t)Δ(t). (1.5)

The function f : T → R is called rd-continuous if it is continuous at the right-dense points
and if the left-sided limits exist in left-dense points. We denote the set of all f : T → R which
are rd-continuous and regressive by �. If p ∈ �, then we can define the exponential function
by

ep(t, s) = exp

(∫ t

s

ξμ(t)
(
p(τ(t))

)
Δτ

)

(1.6)

for t ∈ T, s ∈ T
k, where ξh(z) is the cylinder transformation, which is defined by

ξh(z) =

⎧
⎨

⎩

log(1 + hz)
h

, h /= 0,

z, h = 0.
(1.7)

Alternately, for p ∈ � one can define the exponential function ep(·, t0), to be the unique
solution of the IVP xΔ(t) = p(t)x(t)with x(t0) = 1.

The various-type oscillation and nonoscillation criteria for solutions of ordinary and
partial differential equations have been studied extensively in a large cycle of works (see
[4–31]).
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In [27], the authors have considered second-order nonlinear neutral dynamic equation

(
r(t)
((

y(t) + p(t)y(t − τ)
)Δ)γ)Δ + f

(
t, y(t − δ)

)
= 0 (1.8)

on a time scale T. They have assumed that γ > 0 is a quotient of odd positive integers, τ and
δ positive constants such that the delay functions τ(t) = t − τ < t and δ(t) = t − δ < t satisfy
τ(t) and δ(t) : T → T for all t ∈ T, r(t) and p(t) real-valued positive functions defined on T

and also they have supposed that

(H1)
∫∞
t0
(1/r(t))1/γΔt = ∞, 0 ≤ p(t) < 1,

(H2) f(t, u) : T × R → R is continuous such that uf(t, u) > 0 for all u/= 0 and there exists
a nonnegative function q(t) defined on T such that |f(t, u)| ≥ q(t)|uγ |

and were concerned with oscillation properties of (1.8). In [28], Saker has considered second-
order nonlinear neutral delay dynamic equation

(
r(t)
((

y(t) + p(t)y(t − τ)
)Δ)γ)Δ + f

(
t, y(t − δ)

)
= 0, (1.9)

when γ ≥ 1 is an odd positive integer with r(t) and p(t) real-valued positive functions defined
on T. The author also has improved some well-known oscillation results for second-order
neutral delay difference equations. Agarwal et al. [29] have considered the second-order
perturbed dynamic equation

(
r(t)
(
xΔ
)γ)Δ

+ F(t, x(t)) = G
(
t, x(t), xΔ(t)

)
, (1.10)

where γ ∈ N is odd and they have interested in asymptotic behavior of solutions of (1.10).
Saker et al. [30] have studied the second-order damped dynamic equation with damping

(
a(t)xΔ(t)

)Δ
+ p(t)xΔσ

(t) + q(t)
(
foxσ) = 0, (1.11)

when a(t), p(t), and q(t) are positive real-valued rd-continuous functions and they have
proved that if

∫∞
t0
(e−p/r(t, t0)/r(t))Δt = ∞ and

∫∞
t0
(e−p/r(t, t0)/r(t))Δt < ∞, then every solution

of (1.11) is oscillatory.
In the present paper, we consider the second order nonlinear dynamic equation

(
r(t)
(
xΔ(t)

)γ)Δ
+ p(t)

(
xΔ(t)

)γ
+ f
(
t, x
(
g(t)
))

= 0, (1.12)

where p, r are real-valued, nonnegative, and right-dense continuous function on a time scale
T ⊂ R, with supT = ∞ and γ is a quotient of odd positive integers. We assume that g : T → T

is a nondecreasing function and such that g(t) ≥ t, for t ∈ T and limt→∞g(t) = ∞. The
function f ∈ C(T×R,R) is assumed to satisfy uf(t, u) > 0, for u/= 0 and there exists a positive
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rd-continuous function q defined on T such that |f(t, u)/uγ | ≥ q(t) for u/= 0. Throughout this
paper we assume that

∫∞

t0

(
e−p/r(t, t0)

r(t)

)1/γ

Δt = ∞. (A∗)

Since we are interested in the oscillatory of solutions near infinity, we assume that
supT = ∞ and define the time scale interval [t0,∞)

T
by [t0,∞)

T
:= [t0,∞)∩T. The oscillation

of solutions of the second-order nonlinear dynamic equation (1.12) with damping on an
arbitrary time scale T is investigated. The generalized Riccati transformation is applied for
the study of the Kamenev-type oscillation criteria for this nonlinear dynamic differential
equation. Several new sufficient conditions for oscillatory solutions of this equation are
obtained.

A solution x(t) of (1.12) is said to be oscillatory if it is neither eventually positive nor
eventually negative, otherwise it is nonoscillatory.

2. Preliminary Results

Lemma 2.1. Assume that the condition (A∗) is satisfied and (1.12) has a positive solution x(t) on
[t0,∞)

T
. Then there exists a sufficiently large t1 ∈ [t0,∞)

T
such that

(
r(t)
(
xΔ(t)

)γ)Δ
< 0, xΔ(t) > 0 for t ∈ [t1,∞)

T
. (2.1)

Proof. Let t1 ∈ [t0,∞) such that x(g(t)) > 0 on [t1,∞). Since x(t) is positive nonoscillatory
solution of (1.12)we can assume that xΔ(t) < 0 for all large t. Then without loss of generality
we take xΔ(t) < 0 for all t ≥ t2 ≥ t1. From (1.12) it follows that

(
r(t)
(
xΔ(t)

)γ)Δ
+ p(t)

(
xΔ(t)

)γ
= −f(t, x(g(t))) < 0 (2.2)

and so

(
r(t)
(
xΔ(t)

)γ)Δ
+ p(t)

(
xΔ(t)

)γ
< 0. (2.3)

Define y(t) = −r(t)(xΔ(t))γ . Hence

yΔ(t) +
p(t)
r(t)

y(t) > 0, (2.4)

and it implies that

y(t) > y(t2)e−p/r(·, t2). (2.5)
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Then

−r(t)
(
xΔ(t)

)γ
> −r(t2)

(
xΔ(t2)

)γ
e−p/r(·, t2), (2.6)

and therefore

xΔ(t) ≤ r1/γ(t2)
(
xΔ(t2)

)(e−p/r(·, t2)
r(t)

)1/γ

. (2.7)

Next an integration for t > t3 ≥ t2 and by (A∗) gives

x(t) ≤ x(t3) + r1/γ(t2)
(
xΔ(t2)

)∫ t

t3

(
e−p/r(s, t2)

r(s)

)1/γ

Δs −→ −∞ as t −→ ∞ (2.8)

which is a contradiction. Hence xΔ(t) is not negative for all large t and so xΔ(t) > 0 for all
t ≥ t1. This completes the proof of Lemma 2.1.

We now define

α1(t) :=
(

1
r(t)

∫∞

t

q(s)Δs

)(1−γ)/γ

α2(t, u) :=

(

r1/γ(t)
∫ t

u

Δs

r1/γ(s)

)γ−1

α(t) :=

{
α1(t), 0 < γ ≤ 1,
α2(t, t1), γ ≥ 1.

(2.9)

Lemma 2.2. Assume that (A∗) holds and (1.12) has a positive solution x(t) on [t0,∞)
T
. Then there

exists a sufficiently large t1 ∈ [t0,∞)
T
such that if 0 < γ ≤ 1 for t ≥ t1 one has

(
xΔ(t)
xσ(t)

)1−γ
≥ α1(t). (2.10)

Whereas, if γ ≥ 1, one has

(
x(t)
xΔ(t)

)γ−1
≥ α2(t, t1) for t ≥ t1. (2.11)

Proof. As in the proof of Lemma 2.1, there is a sufficiently large t1 ∈ [t0,∞)
T
such that

x(t) > 0, xΔ(t) > 0,
(
r(t)
(
xΔ(t)

)γ)Δ
< 0, for t ≥ t1. (2.12)
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From (1.12) and (2.12) it follows that

(
r(t)
(
xΔ(t)

)γ)Δ
+ p(t)

(
xΔ(t)

)γ
= −f(t, x(g(t))) < 0, (2.13)

and so

(
r(t)
(
xΔ(t)

)γ)Δ
< −f(t, x(g(t))). (2.14)

Then

r(t)
(
xΔ(t)

)γ ≥
∫∞

t

f
(
s, x
(
g(s)

))
Δs ≥

∫∞

t

q(s)xγ(g(s)
)
Δs

≥ xγ(g(t)
)
∫∞

t

q(s)Δs ≥ (xσ(t))γ
∫∞

t

q(s)Δs.

(2.15)

Next, when 0 < γ ≤ 1, we get

(
xΔ(t)
xσ(t)

)1−γ
≥ α1(t) for t ≥ t1. (2.16)

Finally, since r(t)(xΔ(t))γ is decreasing on [t1,∞)
T
for γ ≥ 1, we get

x(t) ≥ x(t) − x(t1) =
∫ t

t1

(
r(s)
(
xΔ(s)

)γ)1/γ

r1/γ(s)
Δs

≥
(
r(t)
(
xΔ(t)

)γ)1/γ ∫ t

t1

1
r1/γ(s)

Δs,

(2.17)

and we obtain

(
x(t)
xΔ(t)

)γ−1
≥ α2(t, t1) for t ≥ t1. (2.18)

3. Main Results

Theorem 3.1. Assume that (A∗) holds and there exist a function φ(t) such that r(t)φ(t) is a Δ-
differentiable function and a positive real rd-functions Δ-differentiable function z(t) such that

lim sup
t→∞

∫ t

t1

[

Ψ(s) − 1
4
r(s)(ν(s))2

γz(s)α(s)

]

Δs = ∞, (3.1)
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where

Ψ(t) = −z(t)
(
q(s) − (r(t)φ(t))Δ +

γα(t)
r(t)

(
p(t)
(
r(t)φ(t)

)σ +
((
r(t)φ(t)

)σ)2)
)
,

ν(t) = zΔ(t) − γz(t)α(t)
r(t)

(
p(t) − 2

(
r(t)φ(t)

)σ)
.

(3.2)

Then every solution of (1.12) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of (1.12). Without loss of
generality, there is a t1 ∈ [t0,∞)

T
, sufficiently large, so that x(t) satisfies the conclusions of

Lemmas 2.1 and 2.2 on [t0,∞)
T
. Define the function w(t) by Riccati substitution

w(t) = z(t)r(t)

((
xΔ(t)
x(t)

)γ

+ φ(t)

)

, t ≥ t1. (3.3)

Then w(t) satisfies

wΔ(t) =
(

z(t)
xγ(t)

)(
r(t)
(
xΔ(t)

)γ)Δ
+
(

z(t)
xγ(t)

)Δ(
r(t)
(
xΔ(t)

)γ)σ

+ z(t)
(
r(t)φ(t)

)Δ + zΔ(t)
(
r(t)φ(t)

)σ
,

wΔ(t) =
(

z(t)
xγ(t)

)(
r(t)
(
xΔ(t)

)γ)Δ
+

(
zΔ(t)xγ(t) − z(t)(xγ(t))Δ

xγ(t)(xγ(t))σ

)(
r(t)
(
xΔ(t)

)γ)σ

+ z(t)
(
r(t)φ(t)

)Δ + zΔ(t)
(
r(t)φ(t)

)σ
.

(3.4)

From (1.12) and the definition of w(t) for t ≥ t1 it follows that

wΔ(t) =
(

z(t)
xγ(t)

)(
−p(t)

(
xΔ(t)

)γ − f
(
t, x
(
g(t)
)))

+ zΔ(t)

(
r(t)
(
xΔ(t)

)γ)σ

(xγ(t))σ

− z(t)
(xγ(t))Δ

(
r(t)
(
xΔ(t)

)γ)σ

xγ(t)(xγ(t))σ
+ z(t)

(
r(t)φ(t)

)Δ + zΔ(t)
(
r(t)φ(t)

)σ
.

(3.5)

Using the fact that f(t, x(g(t))) ≥ q(t)xγ(g(t)) and x(t) is a increasing function, we obtain

wΔ(t) ≤ −z(t)q(t) − z(t)p(t)
(xγ(t))Δ

xγ(t)
+ zΔ(t)

((
r(t)(xΔ(t))γ

xγ(t)

)σ

+
(
r(t)φ(t)

)σ
)

− z(t)

(
xΔ(t)

)γ

xγ(t)

(
wσ(t)
zσ(t)

− (r(t)φ(t))σ
)
+ z(t)

(
r(t)φ(t)

)Δ
.

(3.6)

Now we consider the following two cases: 0 < γ ≤ 1 and γ > 1.
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In the first case 0 < γ ≤ 1. Using the Pötzsche chain rule (see, [3]), we obtain

(xγ(t))Δ = γ

∫1

0

[
x(t) + hμ(t)xΔ(t)

]γ−1
dhxΔ(t) ≥ γ(xσ(t))γ−1xΔ(t). (3.7)

Using (3.7) in (3.6) for t ≥ t1, we get

wΔ(t) ≤ −z(t)q(t) − γz(t)p(t)
xΔ(t)
xσ(t)

(
xσ(t)
x(t)

)γ

+ zΔ(t)
wσ(t)
zσ(t)

− γz(t)
xΔ(t)
xσ(t)

(
xσ(t)
x(t)

)γ(wσ(t)
zσ(t)

− (r(t)φ(t))σ
)
+ z(t)

(
r(t)φ(t)

)Δ
.

(3.8)

By Lemmas 2.1 and 2.2, for t ≥ t1, we have that

xΔ(t)
xσ(t)

=
1

r(t)
r(t)
(
xΔ(t)

)γ

(xγ(t))σ

(
xΔ(t)
xσ(t)

)1−γ
≥ α1(t)

r(t)

(
r(t)
(
xΔ(t)

)γ)σ

(xγ(t))σ
,

xσ(t)
x(t)

≥ 1.

(3.9)

In the view of (3.8), and (3.9) we get

wΔ(t) ≤ −z(t)q(t) + z(t)
(
r(t)φ(t)

)Δ − γz(t)p(t)
α1(t)
r(t)

(
wσ(t)
zσ(t)

− (r(t)φ(t))σ
)

+ zΔ(t)
wσ(t)
zσ(t)

− γz(t)
α1(t)
r(t)

(
wσ(t)
zσ(t)

− (r(t)φ(t))σ
)2

.

(3.10)

In the second case γ > 1. Applying the Pötzsche chain rule (see, [3]), we obtain

(xγ(t))Δ = γ

∫1

0

[
x(t) + hμ(t)xΔ(t)

]γ−1
dhxΔ(t) ≥ γ(x(t))γ−1xΔ(t). (3.11)

In the view of (3.11), (3.6) yields

wΔ(t) ≤ −z(t)q(t) + z(t)
(
r(t)φ(t)

)Δ − γz(t)p(t)
(x(t))γ−1

xγ(t)
xΔ(t)

+ zΔ(t)
wσ(t)
zσ(t)

− γz(t)
(x(t))γ−1

xγ(t)
xΔ(t)

(
wσ(t)
zσ(t)

− (r(t)φ(t))σ
)
.

(3.12)

By Lemmas 2.1 and 2.2, we have that

xΔ(t)
x(t)

=
1

r(t)
r(t)
(
xΔ(t)

)γ

xγ(t)

(
x(t)
xΔ(t)

)γ−1
≥ α2(t, t1)

r(t)

(
r(t)
(
xΔ(t)

)γ)σ

(xγ(t))σ
. (3.13)
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By (3.13), (3.12), and then using the definition of w(t), we get

wΔ(t) ≤ −z(t)q(t) + z(t)
(
r(t)φ(t)

)Δ − γz(t)p(t)
α2(t, t1)
r(t)

(
wσ(t)
zσ(t)

− (r(t)φ(t))σ
)

+ zΔ(t)
wσ(t)
zσ(t)

− γz(t)
α2(t, t1)
r(t)

(
wσ(t)
zσ(t)

− (r(t)φ(t))σ
)2

.

(3.14)

Using (3.10), (3.14), and the definitions of Ψ(t), ν(t), and α(t) for γ > 0, we get

wΔ(t) ≤ −Ψ(t) + ν(t)
wσ(t)
zσ(t)

− γz(t)
α(t)
r(t)

(wσ(t))2

(zσ(t))2
. (3.15)

Then, we can write

wΔ(t) ≤ −Ψ(t) +
r(t)(ν(t))2

4γz(t)α(t)
−
⎡

⎣

√
γz(t)α(t)

r(t)
wσ(t)
zσ(t)

− 1
2

√
r(t)

γz(t)α(t)
ν(t)

⎤

⎦

2

, (3.16)

and so, we get

wΔ(t) ≤ −
[

Ψ(t) − r(t)(ν(t))2

4γz(t)α(t)

]

. (3.17)

Integrating (3.17)with respect to s from t1 to t, we get

w(t) −w(t1) ≤ −
∫ t

t1

[

Ψ(s) − r(s)(ν(s))2

4γz(s)α(s)

]

Δs, (3.18)

and this implies that

∫ t

t1

[

Ψ(s) − r(s)(ν(s))2

4γz(s)α(s)

]

Δs ≤ |w(t1)| (3.19)

which contradicts to assumption (3.1). This completes the proof of Theorem 3.1.

Corollary 3.2. Assume that (A∗) holds. If

lim sup
t→∞

∫ t

t1

[

q(s) +
γα(s)p2(s)

4r(s)

]

Δs = ∞, (3.20)

then every solution of (1.12) is oscillatory.
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Example 3.3. Consider the nonlinear dynamic equation

(
t−γ
(
xΔ(t)

)γ)Δ
+
1
2
t−1−γ

(
xΔ(t)

)γ
+

1
t1/γ

xγ(g(t)
)
= 0, t ∈ [t0,∞)

T
, T = 2N, (3.21)

where γ ≥ 1 is the quotient of the odd positive integers.We have that p(t) = (1/2)(t−1−γ), q(t) =
1/t1/γ and r(t) = t−γ . If T = 2N, then σ(t) = 2t and e−1/σ(t)(t, t0) = t0/t. So we get e−p/r(t, t0) =
t0/t. It is clear that (A∗) holds. Indeed,

∫ t

t0

(
e−p/r(·, t0)

r(s)

)1/γ

Δs = (t0)1/γ
∫ t

t0

1
s(1/γ)−1

Δs = ∞,

α2(t, t0) =

(

(r(t))1/γ
∫ t

t0

Δs

(r(s))1/γ

)γ−1
= t1/(γ−1)

(∫ t

t0

Δs

s−1

)γ−1
,

(3.22)

and then

∫ t

t0

Δs

s−1
= ∞ (3.23)

and so we can find t∗ ≥ t1 such that
∫ t
t0
Δs/r1/γ ≥ 1 for t ≥ t∗. Then we can see from

Corollary 3.2 that it follows that

lim sup
t→∞

∫ t

t1

[
1

s1/γ
+
γα(s)

(
p(s)

)2

4r(s)

]

Δs = ∞, (3.24)

and therefore every solution of (3.21) is oscillatory.
Now, let us introduce the class of functions �.
Let D0 ≡ {(t, s) ∈ T

2 : t > s ≥ t0} and D ≡ {(t, s) ∈ T
2 : t ≥ s ≥ t0}. The function

H ∈ Crd(D,R) has the following properties:

H(t, t) = 0, t ≥ t0, H(t, s) > 0, on D0, (3.25)

and H has a continuous Δ-partial derivative HΔ
s (t, s) on D0 with respect to the second

variable. (H is rd-continuous function if H is rd-continuous function in t and s.)

Theorem 3.4. Assume that the conditions of Lemma 2.1 are satisfied. Furthermore, suppose that
there exist functions H,HΔ

s ∈ Crd(D,R) such that (3.25) holds and there exist a function φ(t) with
r(t)φ(t) a Δ-differentiable function and a positive Δ-differentiable function z(t) such that

lim sup
t→∞

1
H(t, t1)

∫ t

t1

[
H(t, s)Ψ(s) − r(s)

4γH(t, s)z(s)α(s)
ϕ2(t, s)

]
Δs = ∞, (3.26)

where ϕ(t, s) = [HΔ
s (t, s) +H(t, s)ν(s)]. Then every solution of (1.12) is oscillatory on [t0,∞)

T
.
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Proof. Assume that (1.12) has a nonoscillatory solution on [t0,∞)
T
. Then without loss of

generality, there is a sufficiently large t1 ∈ [t0,∞)
T
such that x(t) satisfies the conclusions

of Lemmas 2.1 and 2.2 on [t0,∞)
T
. Consider the generalized Riccati substitution

w(t) = z(t)r(t)

((
xΔ(t)
x(t)

)γ

+ φ(t)

)

. (3.27)

We proceed as Theorem 3.1 and from (3.15) it follows that

wΔ(t) ≤ −Ψ(t) + ν(t)
wσ(t)
zσ(t)

− γz(t)
α(t)
r(t)

(wσ(t))2

(zσ(t))2
. (3.28)

Multiplying both sides of (3.28) by H(t, s) and integrating with respect to s from t1 to t (t ≥
t1), we obtain

∫ t

t1

H(t, s)Ψ(s)Δ(s) ≤ −
∫ t

t1

H(t, s)wΔ(s) +
∫ t

t1

H(t, s)ν(s)
wσ(s)
zσ(s)

Δs

−
∫ t

t1

γH(t, s)z(s)
α(s)
r(s)

(wσ(s))2

(zσ(s))2
Δs.

(3.29)

Integrating by parts, we get

∫ t

t1

H(t, s)Ψ(s)Δ(s) ≤ H(t, t1)w(t1) +
∫ t

t1

HΔ
s (t, s)w

σ(s)Δs +
∫ t

t1

H(t, s)ν(s)
wσ(s)
zσ(s)

Δs

−
∫ t

t1

γH(t, s)z(s)
α(s)
r(s)

(wσ(s))2

(zσ(s))2
Δs,

∫ t

t1

H(t, s)Ψ(s)Δ(s) ≤H(t, t1)w(t1) +
∫ t

t1

[
HΔ

s (t, s) +H(t, s)ν(s)
]wσ(s)
zσ(s)

Δs

−
∫ t

t1

γH(t, s)z(s)
α(s)
r(s)

(wσ(s))2

(zσ(s))2
Δs.

(3.30)

It is easy to see that

∫ t

t1

H(t, s)Ψ(s)Δ(s) ≤ H(t, t1)w(t1) +
∫ t

t1

ϕ(t, s)
wσ(s)
zσ(s)

Δs

−
∫ t

t1

γH(t, s)z(s)
α(s)
r(s)

(wσ(s))2

(zσ(s))2
Δs,

(3.31)

where

ϕ(t, s) =
[
HΔ

s (t, s) +H(t, s)ν(s)
]
. (3.32)
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Then we can write

∫ t

t1

H(t, s)Ψ(s)Δ(s) ≤ H(t, t1)w(t1) +
∫ t

t1

r(s)ϕ2(t, s)
4γH(t, s)z(s)α(s)

Δs

−
∫ t

t1

⎡

⎣

√
γH(t, s)z(s)α(s)

r(s)
wσ(s)
zσ(s)

− 1
2

√
r(s)

γH(t, s)z(s)α(s)
ϕ(t, s)

⎤

⎦

2

Δs.

(3.33)

Hence

∫ t

t1

H(t, s)Ψ(s) − r(s)ϕ2(t, s)
4γH(t, s)z(s)α(s)

Δs ≤ H(t, t1)w(t1)

lim sup
t→∞

1
H(t, t1)

∫ t

t1

[

H(t, s)Ψ(s) − r(s)ϕ2(t, s)
4γH(t, s)z(s)α(s)

]

Δs ≤ w(t1)

(3.34)

which contradicts with assumption (3.26). This completes the proof of Theorem 3.4.

Corollary 3.5. Assume that (A∗) holds. Furthermore, suppose that there exist functionsH,HΔ
s , and

h ∈ Crd(D,R) such that (3.25) holds and there exist a function φ(t) such that r(t)φ(t) is a Δ-
differentiable function and a positive Δ-differentiable function z(t) such that

lim sup
t→∞

1
H(t, t1)

∫ t

t1

[

H(t, s)Ψ(s) − h2(s)(zσ(s))2r(s)
4γz(s)α(s)

]

Δs = ∞, (3.35)

whereΨ(t) is as defined in Theorem 3.1 andHΔ
s = −h(t, s)

√
H(t, s)−H(t, s)ν(t)/zσ(t). Then every

solution of (1.12) is oscillatory on [t0,∞)
T
.

Theorem 3.6. Assume that (A∗) holds and there exists a Δ-differentiable positive function z(t) such
that

lim sup
t→∞

∫ t

t1

[

z(s)q(s) − r(s)ξγ+1(s)
(
γ + 1

)γ+1
zγ(s)

]

Δs = ∞, (3.36)

where

ξ(t) = zΔ(t) − z(t)p(t)
r(t)

. (3.37)

Then every solution of (1.12) is oscillatory.
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Proof. Suppose that (1.12) has a nonoscillatory solution on [t0,∞)
T
. Then without loss of

generality, there is a sufficiently large t1 ∈ [t0,∞)
T
such that x(t) satisfies the conclusions

of Lemmas 2.1 and 2.2 on [t0,∞)
T
. Consider the generalized Riccati substitution

w(t) = z(t)r(t)

(
xΔ(t)
x(t)

)γ

. (3.38)

From (3.6) it follows that

wΔ(t) ≤ −z(t)q(t) − z(t)p(t)

(
xΔ(t)

)γ

xγ(t)
+ zΔ(t)

wσ(t)
zσ(t)

− z(t)

(
xΔ(t)

)γ

xγ(t)
wσ(t)
zσ(t)

. (3.39)

In the same manner as in the proof of Theorem 3.1, we get

(xγ(t))Δ ≥
{
γ(xσ(t))γ−1xΔ, 0 < γ ≤ 1
γ(x(t))γ−1xΔ, γ > 1.

(3.40)

If 0 < γ ≤ 1, then we have that

wΔ(t) ≤ −z(t)q(t) +
[
zΔ(t) − z(t)p(t)

r(t)

]
wσ(t)
zσ(t)

− γz(t)
(xσ(t))γ

xγ(t)
xΔ(t)
xσ(t)

wσ(t)
zσ(t)

, (3.41)

whereas, if γ > 1, we have that

wΔ(t) ≤ −z(t)q(t) +
[
zΔ(t) − z(t)p(t)

r(t)

]
wσ(t)
zσ(t)

− γz(t)
xσ(t)
x(t)

xΔ(t)
xσ(t)

wσ(t)
zσ(t)

. (3.42)

Using the fact that x(t) is increasing and (r(t)(xΔ(t))γ is decreasing on [t0,∞)
T
, we get

xσ(t) ≥ x(t), xΔ(t) ≥
(
rσ(t)
r(t)

)1/γ(
xΔ(t)

)σ
. (3.43)

Using (3.41), (3.42), and (3.43), we obtain

wΔ(t) ≤ −z(t)q(t) + ξ(t)
wσ(t)
zσ(t)

− z(t)
γ

r1/γ(t)

(
wσ(t)
zσ(t)

)λ

, (3.44)

where λ = (γ + 1)/γ . Define A > 0 and B > 0 by

Aλ =
γz(t)(wσ(t))λ

(zσ(t))λr1/γ(t)
, Bλ−1 =

r1/(γ+1)(t)ξ(t)
λγ1/λz1/λ(t)

. (3.45)
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Then using the inequality (see [32])

λABλ−1 −Aλ ≤ (λ − 1)Bλ, (3.46)

we obtain

ξ(t)
wσ(t)
zσ(t)

− z(t)
γ

r1/γ(t)

(
wσ(t)
zσ(t)

)λ

≤ r(t)ξγ+1(t)
(
γ + 1

)γ+1
zγ(t)

. (3.47)

From this last inequality and (3.44) it follows that

lim sup
t→∞

∫ t

t1

[

z(s)q(s) − r(s)ξγ+1(s)
(
γ + 1

)γ+1
zγ(s)

]

Δs ≤ w(t1) (3.48)

which contradicts with the assumption (3.36). Theorem 3.6 is proved.

Example 3.7. Consider the second-order equation

(
tγ
(
xΔ(t)

)γ)Δ
+

1
t2

(
xΔ(t)

)γ
+
1
t
xγ(g(t)

)
= 0, (3.49)

where γ = 1/3 ≤ 1, r(t) = t1/3, q(t) = 1/t, t ≥ t0 = 2. Then it follows that

e−p/r(t, 2) ≥ 1 −
∫ t

2

p(s)
r(s)

Δs = 1 −
∫ t

2
s−7/3Δs >

1
2

(3.50)

for t ≥ 2, and so

∫ t

2

(
1

r(s)
e−p/r(s, 2)

)1/γ

Δs ≥
(
1
2

)3 ∫ t

2

1
s
Δs −→ ∞ as t −→ ∞. (3.51)

Hence (A∗) is satisfied. Now let z(t) = 1 for t ≥ 2. Then

lim sup
t→∞

∫ t

2

[

z(s)q(s) − r(s)ξγ+1(s)
(
γ + 1

)γ+1
zγ(s)

]

Δs = lim sup
t→∞

∫ t

2

[
1
s
− s−25/9

(4/3)4/3

]

Δs = ∞, (3.52)

and so (3.36) is satisfied as well. Hence by Theorem 3.6, we have that (3.49) is oscillatory.

Theorem 3.8. Assume that the conditions of Lemma 2.1 hold. Furthermore, suppose that there exist
functions H,HΔ

s ∈ Crd(D,R) such that (3.25) holds and there exists a positive real rd-functions
Δ-differentiable function z(t) such that

lim sup
t→∞

1
H(t, t1)

∫ t

t1

[

H(t, s)z(s)q(s) − Cγ+1(t, s)r(s)
(
γ + 1

)γ+1
zγ(s)(H(t, s))γ

]

Δs = ∞, (3.53)
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where C(t, s) = HΔ
s z

σ(s) + H(t, s)ξ(t) and ξ(t) = zΔ(t) − z(t)(p(t)/r(t)). Then every solution of
(1.12) is oscillatory on [t0,∞)

T
.

Proof . Assume that (1.12) has a nonoscillatory solution on [t0,∞)
T
. Then without loss of

generality, there is a sufficiently large t1 ∈ [t0,∞)
T
such that x(t) satisfies the conclusions

of Lemmas 2.1 and 2.2 on [t0,∞)
T
. Consider the generalized Riccati substitution

w(t) = z(t)r(t)

(
xΔ(t)
x(t)

)γ

. (3.54)

By Theorem 3.6 and inequality (3.44)

wΔ(t) ≤ −z(t)q(t) + ξ(t)
wσ(t)
zσ(t)

− z(t)
γ

r1/γ(t)

(
wσ(t)
zσ(t)

)λ

, (3.55)

where λ = (γ+1)/γ . Multiplying both sides of (3.55)withH(t, s) and integrating with respect
to s from t1 to t (t ≥ t1), we get

∫ t

t1

H(t, s)z(s)q(s)Δs ≤ −
∫ t

t1

H(t, s)wΔ(s)Δ(s) +
∫ t

t1

H(t, s)ξ(s)
wσ(s)
zσ(s)

−
∫ t

t1

H(t, s)z(s)
γ

r1/γ(s)

(
wσ(s)
zσ(s)

)λ

Δs.

(3.56)

Integrating by parts and using (3.25), we obtain

∫ t

t1

H(t, s)z(s)q(s)Δs ≤ H(t, t1)w(t1)
∫ t

t1

C(t, s)
wσ(s)
zσ(s)

−
∫ t

t1

γH(t, s)z(s)
r1/γ(s)

(
wσ(s)
zσ(s)

)λ

Δs.

(3.57)

Define A > 0 and B > 0 by

Aλ =
γH(t, s)z(t)(wσ(t))λ

(zσ(t))λr1/γ(t)
, Bλ−1 =

r1/(γ+1)(t)C(t, s)

λ
(
γH(t, s)z(s)

)1/λ . (3.58)

Using the inequality (see [32])

λABλ−1 −Aλ ≤ (λ − 1)Bλ, (3.59)

we get

C(t, s)
wσ(t)
zσ(t)

− γH(t, s)z(t)
r1/γ(t)

(
wσ(t)
zσ(t)

)λ

≤ r(t)Cγ+1(t, s)
(
γ + 1

)γ+1
Hγ(t, s)zγ(t)

. (3.60)
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From this last inequality and (3.55) it follows that

lim sup
t→∞

1
H(t, t1)

∫ t

t1

[

H(t, s)z(s)q(s) − r(s)Cγ+1(t, s)
(
γ + 1

)γ+1
Hγ(t, s)zγ(t)

]

Δs ≤ w(t1) (3.61)

which contradicts with the assumption (3.53). This completes the proof of Theorem 3.8.

Corollary 3.9. Assume that all conditions of Lemma 2.1 hold. Furthermore, suppose that there exist
functionsH,HΔ

s , and h ∈ Crd(D,R) such that (3.25) holds and there exists a positiveΔ-differentiable
function z(t) such that

lim sup
t→∞

1
H(t, t1)

∫ t

t1

[

H(t, s)z(s)q(s) − (−h(t, s))γ+1r(s)
(
γ + 1

)γ+1
zγ(s)

]

Δs = ∞, (3.62)

where HΔ
s + H(t, s)ξ(t)/zσ(s) = −h(t, s)(H(t, s))γ/(γ+1)/zσ(t). Then every solution of (1.12) is

oscillatory on [t0,∞)
T
.

Example 3.10. Consider the second-order dynamic equation

(
tγ
(
xΔ(t)

)γ)Δ
+

1
t2

(
xΔ(t)

)γ
+
1
t
xγ(g(t)

)
= 0, (3.63)

where t ∈ [t0,∞)
T
, t1 ≥ t0 = 2, γ = 5/3 ≥ 1, q(t) = 1/t. It is easy to check that (A∗) holds. For

z(t) = 1 andH(t, s) = (t − s)2, it immediately follows that

h(t, s) =
{
(t − s) − (t − s)2 + (t − σ(s))

}
(t − s)2γ/(γ+1) (3.64)

and so −h(t, s) = 0. Hence,

lim sup
t→∞

1
H(t, 2)

∫ t

2

[

H(t, s)z(s)q(s) − (−h(t, s))γ+1r(s)
(
γ + 1

)γ+1
zγ(s)

]

Δs =lim sup
t→∞

1
t2

∫ t

2

1
s
(t − s)2Δs = ∞.

(3.65)

Therefore by Corollary 3.9, every solution of (3.63) is oscillatory.
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[20] O. Došlý, “Oscillation and spectral properties of a class of singular self-adjoint differential operators,”
Mathematische Nachrichten, vol. 188, pp. 49–68, 1997.

[21] A. Toraev and G. I. Garadzhaeva, “Kneser estimates for coefficients of elliptic equations,” Doklady
Akademii Nauk SSSR, vol. 295, no. 3, pp. 546–548, 1987.

[22] A. Toraev, “Oscillation and nonoscillation of the solutions of elliptic equations,”Differential Equations,
vol. 22, no. 8, pp. 1002–1010, 1986.

[23] A. Toraev, “Oscillation of elliptic operators and the structure of their spectrum,” Doklady Akademii
Nauk SSSR, vol. 279, no. 2, pp. 306–309, 1984.

[24] A. Toraev, “The oscillation of solutions of elliptic equations,” Doklady Akademii Nauk SSSR, vol. 280,
no. 2, pp. 300–303, 1985.

[25] A. Toraev, “Criteria for oscillation and nonoscillation for elliptic equations,”Differential Equations, vol.
21, no. 1, pp. 104–113, 1985.

[26] A. Toraev, “The oscillatory and nonoscillatory behavior of solutions of elliptic-type higher order
equations,” Doklady Akademii Nauk SSSR, vol. 259, no. 6, pp. 1309–1311, 1981.



18 Abstract and Applied Analysis

[27] R. P. Agarwal, D. O’Regan, and S. H. Saker, “Oscillation criteria for second-order nonlinear neutral
delay dynamic equations,” Journal of Mathematical Analysis and Applications, vol. 300, no. 1, pp. 203–
217, 2004.

[28] S. H. Saker, “Oscillation of second-order nonlinear neutral delay dynamic equations on time scales,”
Journal of Computational and Applied Mathematics, vol. 187, no. 2, pp. 123–141, 2006.

[29] R. P. Agarwal, D. O’Regan, and S. H. Saker, “Oscillation criteria for nonlinear perturbed dynamic
equations of second-order on time scales,” Journal of Applied Mathematics & Computing, vol. 20, no. 1-2,
pp. 133–147, 2006.

[30] S. H. Saker, R. P. Agarwal, and D. O’Regan, “Oscillation of second-order damped dynamic equations
on time scales,” Journal of Mathematical Analysis and Applications, vol. 330, no. 2, pp. 1317–1337, 2007.
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