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Is there a relation between fractional calculus and fractal geometry? Can a fraction
al order system be represented by a causal dynamical model? These are the questions 
recently debated in the scientific community. 

The author intends to answer to these questions. In the first part of the paper, some 
recently suggested models are reviewed and no convincing evidence is found for any dy
namical model of a fractional order system having been built with the help of fractals. 
Linear filters with constant lumped parameters have a very limited use as approxima
tions of fractional order systems. The model suggested in the paper is a state-space rep
resentation with parameters as functions of the independent variable. Regularization of 
fractional differentiation is considered and asymptotic error estimates, as well as simula
tion results, are presented. 

1. FRACTIONAL INTEGRATION MODELS, 
OLD A N D NEW, CORRECT A N D WRONG 

Fractional (more exactly, non-integer) order calculus has been developed in parallel with 
the conventional, integer order calculus. It was brought into being by Abel, Riemann and 
Liouville and has benefited from contribution by many authors throughout the 19th and 
.20th centuries. From the very beginning, fractional integration found a physical interpre
tation (Abel's mechanical model). In our time and especially with the arrival of tomog
raphy, physical models of fractional integration have been discovered and studied in spec-
trography, stereology, geophysical explorations[l]. The operator of fractional integration 
Jv (usually, but not necessarily, 0 < v < 1) defined on a suitable function space is usually 
written in the Riemann-Liouville form 

№)(») := Щ [ {x ^ j L * = /(«). a > 0 > (D 
with the gamma-function as a conventional scaling factor. Inversion of the integral equa
tion (1), i.e., finding h{x) from the given f(x), is the mathematical substance of the inverse 
problems arising in the applied problems. 

Another broad field of fractional calculus applications is presented by the processes of 
transfer, such as physical and chemical diffusion [2]. In that field, one deals usually with 
differential equations of a non-integer order, ordinary or partial. 

Finally, a third approach to fractional order systems treats them as signal processors, 
where it is assumed that the causality property should be retained in the model. The causal
ity condition, natural from the physical viewpoint, assures that before an input signal h(t) 
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is applied to the system, no reaction f(t) to that input cat be developed by the system: 

h(t) = 0 for t < 0 implies that f(t) = 0 for t < 0. (2) 

A causal model is especially important for the simulation of a dynamical system represent
ed by ordinary differential equations. If a causal model for fractional order integrators is 
available, it can be employed in a closed-loop simulation circuit, utilizing a general use sim
ulation software to obtain solutions both for linear and non-linear problems. 

In the first group of problems, one rarely, if ever, is concerned with causality: the inver
sion is done off-line. In the second group, there is a certain if tacit understanding of the fact 
that the solution of the differential equation in question should be causal; for this aspect, 
see the works of Kempfle et al., such as [3], or Weber [4]. 

It should be also mentioned that although Abel's apparatus was developed for an ar
bitrary order of integration, all the classical models deal with v — 1/2. Lately, however, 
reports have appeared on physical processes where the fractional integration of orders oth
er than 1/2 have been observed, including a controversial "ultra-slow diffusion". 

We will be concerned here with causal dynamical models of fractional integration / dif
ferentiation, and we will start with the models debated recently in the scientific community. 

Following Nigmatullin [5], consider the causal convolution integral 

f(x)= Г g(x-r)h(r)dr (3) 
./o 

which transforms the input signal h(x) into the output signal f(x) according to the memory 
function (impulse response) g(x). If g(x) = {1 for x > 0,0 for x < 0} (step function), we 
have the conventional first-order integration, and if g(x) is the Dirac delta-function S(x), 
this transformation amounts to an identical reproduction of the input (the zero-order inte
gration). It is logical to infer that the fractional integration of the order z/, 0 < v < 1, will 
have the memory function interpolating, in a sense, between the (5-function and the step 
function. 

Note that the representation of the memory function for the fractional integral known 
since the works of Riemann and Abel follows directly from the definition Eq. (1): 

9{x) = Щ2=*- (4) 

It does indeed interpolate between the ^-function and the step-function in the sense that it 
attributes a strong emphasis to the current value of the signal in the convolution mechanism 
(the weight #(0) = oo), but unlike the 5-function, its memory is not limited to the current 
value and distributed over the whole support of g(x), albeit not evenly. 

Ignoring the representation by Eq. (4), Nigmatullin is asserting in [5] that this interpola
tion is represented by the Cantor fractal function, i.e., by the set of values 0 or 1 alternating 
an infinite number of times on the support [0, ж], with the relative weights of 0 or 1 con
trolled by the value of v. This "function", "normed to one", i.e. divided by ж, is means to 
be the memory function of fractional integration (for more formal definitions of the fractals 
used in this section, see Appendix 1). 

The mathematical inconsistency of the construction in [5] has been shown in the letter 
to this journal [6]. There would have been no need to further mention the hypothesis by 
Nigmatullin were it not for the following. 
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The above attempt is yet another manifestation of the irresistible temptation to link the 
fractional calculus and the fractal geometry. These efforts, stimulated mainly by the lin
guistic proximity of the two terms and an enormous publicity around the fractals and chaos, 
started immediately after the chaos theory was acclaimed by B. Mandelbrot, and have never 
stopped since. The confidence in the existence of such a relation was asserted at the Inter
national Conference on Fractional Calculus (Tokyo, 1990). A leading expert on fractional 
calculus was approached by a firm with the request to find a link between the two fields; 
he found none [7]. Finally, the two subjects were merged into a single panel at the Inter
national Summer School "Fractional and Hyperbolic Geometries/Fractional and Fractal 
Derivatives in Engineering, Applied Physics and Economics" that was held in Bordeaux 
in July 1994, with A. Oustaloup and A. Le Mehaute as coorganizers. The program of the 
school contains an opening by Le Mehaute entitled "Historical Review: From Lobachevski 
to R.R. Nigmatullin: The Kazan way of thinking". 

For the school in Bordeaux, the hypothesis of [5] has been modified: now [2], the Cantor 
function has the support on a constant interval [0, T], with T exceeding the duration of the 
process, and the "norming to one" is performed by dividing by T. By this modification, 
the conspicuous conflict with the notion of convolution has been removed, and the reader is 
invited to believe in the final result which is claimed to be the same as in [5]. In its original 
version, the hypothesis by Nigmatullin had at least some semblance of a physical meaning: 
the division by x did provide for a discontinuity at x = 0, just as in the true memory function 
Eq. (4). Of course, in the other aspects the true memory function and what is claimed in [5] 
and [2] are very different, and anyway, the final formula by Nigmatullin can be obtained 
neither by the original way as in [5] nor with the modification as in [2], which was observed 
by some participants in Bordeaux [8]. 

For a more complete picture of the interaction of the two fields, the following should be 
added. In the works of Zahle et al. [9], an alternative approach to fractional calculus is being 
developed based on the Cesaro derivative. This is one of the fractional operators among 
several in use differing mainly in their domains, and it is linked with the Riemann-Liouville 
approach by the way of the Marchaud derivative [10]. To demonstrate the power of their 
method on a "very bad function", the authors evaluate the Hausdorff measure of the Cantor 
middle-third set. Of course, this has nothing to do with a dynamical model of fractional 
integration; the same can be said about the works of Tricot [11] whose goal is to establish a 
relation between the fractal dimension of the curve and the maximal order of its derivative. 

Returning to the program of the Bordeaux summer school, a lion's share of the presenta
tions were devoted to control systems and other dynamical systems developed by Oustaloup 
and described in his two books [12] and numerous conference presentations. There, the set
ting of the closed-loop dynamical system is considered, with the open-loop frequency re
sponse g(iu), the Fourier transform of the impulse response g(x); x is the time variable and 
и the frequency. 

Oustaloup is making use of the fact that if in the middle-frequency band u/ < и < UJ" , 
g(iu>) can be approximated as 

л / . ч constant . N 

with v — 11, the closed-loop system will have very good performance characteristics. More
over, if the range [u/, u"] is wide enough, the system also exhibits a high robustness, or a 
low sensitivity to parameter changes. (If one defines the crossover frequency uo by means of 
|<7(го;о)| = 1, the "middle-frequency band" is determined by the requirement that the log
arithm of the crossover frequency lie roughly in the middle of the interval [logo;', logo/7].) 
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Although these facts have been known since the 1950's and recommendations of this type 
could be found in the standard textbooks on the control theory of that period, Oustaloup 
has found and developed a number of new interesting applications of these properties. 

To implement the property Eq. (5), linear filters with lumped constant parameters are 
utilized in [12], with the transfer function gou(s) whose poles and zeros alternate and are 
placed at certain distances one from another within the range [logo;', logo;"]. Since Eq. (5) 
with constant = 1 represents the Fourier transform of g(x) as in Eq. (4), these systems are 
claimed to be of the fractional order v. 

The fact remains that, contrary to the assertion, these systems are not fractional order 
systems. The device used in [12] can indeed provide for any, approximately constant, slope 
of the logarithm of the modulo of the frequency response in the middle-frequency band, just 
like д(ш) in Eq. (5). At the low frequencies and at и = 0, however, an arbitrary slope cannot 
be shaped by this device: it corresponds to the singularity of the transfer function gou(s) 
at s = 0; namely, it remains equal to the value q = -(multiplicity of the pole at the origin). 
Indeed, the well known necessary conditions of finite realizabiliy for linear time-invariant 
systems are 

g(iu) ~ cx(iu)q, и —• 0, (6) 
g(iu) ~ С2(га;)р, LJ —У оо, (7) 

with p and q integer (normally non-positive; non-positivity of p is required by another prop
erty of dynamical systems, physical realizability). Thus, a most important parameter of the 
system which is claimed to be represented by such a filter, namely the character of the sin
gularity oig(s) at the origin, is distorted by such "approximation": for v non-integer, it is 
a branching point where we should take the principal branch, and for v integer, it is a pole. 
The component in the time response corresponding to this pole has a different asymptotic 
behavior than that for v non-integer. 

Suppose that in an appropriate normed space H an approximating model represented by 
the operator M(U) is built retaining the property Eq. (6). Then it is impossible to assure 
that there exist a set of parameters U such that for all e > 0 and for all h £ H, there exists 
5(e) such that if \\h\\ < 6(e), then 

\\juh-M(U)h\\ <e (8) 

(approximation property). To illustrate this, it is sufficient to take h(x) in Eq. (8) equal to 
the unit step. One can observe how the different singularities at the origin и = 0 create an 
unbounded discrepancy between the two systems when x -> oo. 

As long as the Oustaloup models are used strictly in the frequency domain in a limited 
band-pass where the transient response is of no concern, they are correct and may lead to 
interesting applications, as in electronic music synthesizers [13]. For the use in the time 
domain as "fractional order systems", they are manifestly inadequate. 

Now consider a state-space representation for linear dynamical systems 

^ = Az(x) + Bh(x), f(x) = Cz(x) + Dh(x), (9) 
ax 

where z(x) is the state vector and A,B,C and D are matrices of corresponding dimensions. 
It is well known that any dynamical system of the form Eq. (9) with constant matrices 

has an input-output representation as a convolution integral Eq. (3), with 

g(t) < - * g(s) = C(sl - А)-1 В + D, (10) 
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where the arrow denotes the Laplace transform and / is the identity matrix. The converse 
statement is, however, untrue, since the conditions of finite realizability Eqs. (6) and (7) 
impose restrictions. In particular, they prevent a finite realization of fractional order sys
tems such as in Eq. (5) with v non-integer. In other words, the character of the singularity 
of the integral Eq. (1) makes it impossible to find a representation of the type Eq. (9). A 
naive approximation such as in [12] has no chance to succeed. 

2. REALIZATION OF FRACTIONAL INTEGRATION 

We are going to look for the solution of the problem of physical realization, both for 
fractional integration and fractional differentiation, in the form which should be properly 
parametrized and causal. 

Addressing first the fractional integration, we require that the condition Eq. (8) be met, 
which, since we are dealing with linear operators, is equivalent to 

for all heH, lim || [M(U) - Jv]h\\ = 0 (П) 

(it is understood here that the set U can be determined by a single parameter a). 
A solution to the problem formulated above, i.e., a model of causal fractional integration, 

has been found in the form similar to Eq. (10) but with the matrices A and С depending on 
the time variable x: 

dz(x) 
A(x)z(x) + Bh(x), 

dx 
/Or) - C(x)z(x) (12) 

(D = 0). The dimensions of matrices are infinite, but after a proper parametrization, 
a model of a finite order n will represent the system, with the approximation condition 
Eq. (11) satisfied. 

The determination of the matrices AnXn{x), 5 n X i , CiXn(x) IS presented below briefly 
as a summary of operations to be performed. A proof can be found in Appendix 2. 

The algorithm consists of the following steps: 
A. Choice of the order of the system, n. 
The order of the approximating system determines uniquely the set of the approximating 

parameters. Its choice is determined by a compromise between accuracy and complexity. 
Some practical considerations are presented at the end of Sec. 3. 

B. Determination of the zeros, poles and gain of the auxiliary transfer func
tion 

A , i - n i 
h-u,n(s) = -gi-v,n JI — 

S fc=2 S • 4 
(13) 

This is done according to the formulas 

Pk,i-u = ~(k-2 + i/)exp 

Afc,i-i, = ~(k- l )exp 

1 -{k-2? 

n + 1 

n + 1 

-(\-k-vf К — Z, O, . . . , Tlj (14) 

91 
1 n 

-">n = 7, П fc=2 

Afc,i-t 

file://-(/-k-vf
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C. Determination of the matrices A*, B* and C*. 
The formula 

h-v,n{s) = C*(sl - A * ) - 1 ^ * (15) 
allows for an infinite number of the solutions A*, B* and C*. A standard software, such 
as in MATLAB with Control Systems Toolbox, will return a set of the matrices satisfying 
Eq. (15), with an A diagonal. 

D. Determination of the matrices А, В and С is performed according to the for
mulas 

A(x) = —, B = ^ - , C(x) = x»-1C*. (16) 
x 1 \y) 

An additional insight into the results is afforded by the analysis in the frequency domain. 
It can be shown that, by virtue of the transformation for the time variable t -» e* (see 
Appendix 2), the frequency variable и has been subject to a transformation ft : R+ - > R + . 
For v = 1/2, 

£1 : и—>u;tanh7ra;. (17) 
This "frequency warping" has altered the asymptotic behavior of the frequency response in 
the proximity of и = 0, so that 

|fci-^,n(«w)| as и —> 0, (18) 

i.e., the condition Eq. (6) has been met by the frequency response Eq. (18). As for the 
condition (7), it is met by the process of the parametrization. Thus, both conditions of 
finite realizability (6) and (7) are met by ki-UjTl(iu). 

Some detail concerning the steps a and b can be found in the conference paper [14]. 

3. REALIZATION OF FRACTIONAL DIFFERENTIATION 

Although historically the fractional derivative, following the classical pattern of the con
ventional (integer order) calculus, was introduced before the fractional integral, it should be 
emphasized that, as in the case of the conventional calculus, physical processes always have 
a character of integration (dissipation of energy and / or information), and the fractional de
rivative is best interpreted as the (left) inverse of the fractional integral Eq. (1). In keeping 
with this line of the argument, one should model the physical system in terms of integration 
(of fractional or integer order, for that matter) and then proceed with its inversion. This is 
well understood in all practical methods of tomography, be it Radonian (3-dimensional) or 
Abelian (2-dimensional). This may not be seen as explicitely in the transfer models involv
ing differential equations (of fractional order), but the fact remains that the symbol of the 
derivative, by it of an integer or fractional order, is a tribute to the conventional mathemat
ical notations tracing back to Leibniz. It is best interpreted physically as the cause of the 
effect represented by the integral. A recognition of this fact is reflected in the simulation 
techniques for the differential equations going back to Thomson (Kelvin) and using inte
grators but no differentiators. An attempt to reproduce in an exact manner a derivative of 
an integer or fractional order would violate the conditions of physical realizability referred 
to in connection with Eq. (7). 

An inversion formula (Abel) is known for Eq. (1) for sufficiently well behaved func
t ions/(x): 
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Inversion of the Riemann-Liouville integral is not a well-posed problem, which is reflect
ed by the presence of differentiation in Eq. (19). Therefore, approximation by the way of 
parametrization should also play the role of regularization (or stabilization, stability being 
understood as the "bounded input-bounded output stability"). 

The algorithm of fractional differentiation of the order v represented as a dynamical 
system in the state-variable representation 

4-z(x) = P(x)z(x) + Q(x)f(x), hn(x) = R(x)z(x) + S(x)f(x), (20) 
dr 

with x as the time variable, consists of the following steps (see a proof in Appendix 2 and 
some detail in [14]): 

A. Choice of the order of the system, n. 
Since the value of n is related (inversely) to the regularization constant 

a = —L-, (21) 
2-\n 

this choice is determined by conventional considerations for the selection of the value of 
the regularization parameter. Namely, in the absence of the information on the noise, a 
compromise between the approximation error and the complexity of the system is sought; 
and if some a priori information, quantitative or descriptive, on the signals and noise is 
available, one of the standard strategies, such as Bayesian, can be selected. 

B. Determination of the zeros, poles and gain of the auxiliary transfer func
tion kUjTl(s) is done in the same manner as for the fractional'lntegration, Eqs. (13)-(14), 
with v replaced by 1 - v. 

C. Determination of the matrices P*, <2*, R* and 5*. 
The formula 

sku,n{s) = R*(sl - P * ) - 1 ^ * + 5* (22) 
has an infinite number of solutions for the set {P*, <2*, Д*, S*}. All the comments in the 
corresponding section on fractional integration pertain here. 

D. Determination of the matrices P , <3, R and S. 
The formulas 

FM = = И , Q{x) = pjjL^e-wi, 

« ( ' ) = « ' ( • ) ? . S(r) = j ^ i - ^ S - w i ; (23) 

determine fully the causal dynamical system Eq. (20), with x as the "time" variable. 
As opposed to Eq. (12), one can observe in Eq. (20) a term proportional to the input 

signal/(x). 
In Appendix 3, one can find a rigorous treatment of the regularization aspects of the 

method, including a stability proof based on the Marcinkievicz-Mikhlin theorem and as
ymptotic estimates of the regularization error. 

A computer simulation of the dynamical subsystem [14] has demonstrated the technique 
to have a high degree of accuracy. Thus, with only seven factors in the product in Eq. (13), 
i.e., with n = 8, the root-mean-square error in simulations was of the order 1 0 - 4 both for 
fractional integration and differentiation, i.e. on a par with, or better than in, the compara
ble techniques (for v — 1/2) of Andersen; Bokasten; Maldonaldo et al.; Minerbo and Levy; 
Nestor and Olsen [15], under the same test signals. None of those techniques provides for 
an arbitrary v nor for a causal solution. 
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4. CONCLUSIONS 

1. A linear filter with constant parameters (an ordinary linear differential equation with 
constant parameters) cannot adequately represent a fractional order system. 

2. No direct relation between fractional calculus and the fractals has been established as 
yet. 

3. Fractional integral or fractional derivative can be represented as an infinite system of 
ordinary linear differential equations of the first order, with the coefficients depending on 
the independent variable. 

4. If the independent variable is understood as the time, fractional integral or fractional 
derivative can be approximated by a dynamical system with time-dependent parameters. 
This system is linear, stable and causal, with the approximation error controlled by the 
order of the system. 
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APPENDIX 1 (see e.g. [9]) 

Define the affine maps Ai,A2'. R—>R 

A\: x —У 7ж, А2: x —> 1 - 7 + 72, 0 < 7 < 1/2. 

Next, define the sequence Cn of compact sets 

Co := [0,1], Cn := A1Cn-1UA2Cn-1. 

DEFINITION. The Cantor set 

С = f| C„. 
n=0 

The middle-third Cantor set is С for 7 = 1/3. 

DEFINITION. The Cantor measure, or the devil's stairway is the Hausdorff measure on R 
restricted to C. 

A P P E N D I X 2 

A. Fractional integration. With the transformation of the independent variable 

x = ae*, r = aeT ' (A.l) 

the integral Eq. (1) becomes 

Here * denotes convolution, 
/i*(r) = /i(aeT) (A.3) 

and 
*„(*) = ( 1 - е - * ) - " . (A.4) 
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The Laplace transform ki-u(s) of ki-u{i) is the beta-function B(s,u). Using the 
well-known relations for beta-functions, we get 

k=2 

where 

h-As) = - П , * —Ь'1-», (А.5) 

/ ? M _ „ = - ( * - 2 + i/), A M _ „ = -(A: - 1). (A.6) 

One can proceed now with defining a finite-dimensional model by truncating the infinite 
product in Eq. (A.5). After the replacement of/3^ and A& by /3& and A& as in Eq. (14), which 
improves drastically the rate of convergence [14], we arrive at Eq. (3). 

In a state-space form, we have 

dz* 
^ - = A*z*(t) + B V W , M*) = C*z*(t), (A.7) 

with the matrices Л ^ Х п , B^xl and ClXn related to the transfer function ki-v^n{s) by the 
equation 

i i - y , n W = C*(al - A * ) - 1 ^ * . (A.8) 

In the model obtained, the input signal 

Ф) = щНае*)ае* (А.9) 

passes the dynamical part represented by the state-space model Eq. (A.7), or the transfer 
function fci_i/,n(s)- The resulting signal фп{Ь) is multiplied by xv~x producing the output 

/ n ( x ) = ^ n ( l n ^ ) x I / - 1 . (АЛО) 

The model defined by Eq. (A.7)-(A.10) is obviously non-causal: if simulation is required, 
the input signal h(x) should be pre-recorded and turned into a function oft, the "model time 
variable" governing the processes in the dynamical subsystem Eq. (A.8). 

Let us perform the substitution 

i x , dx / 4 v * = ln-, dt=—. (A.ll) a x 

It turns Eqs. (A.7) into Eqs. (12) where all the operations are performed "on line", i.e., in 
the "real time" variable x. 

B. Fractional differentiation. A similar technique applied to Eq. (19) with the sub
stitutions x — ае т , г — ае*, yields 

Л<г> = щ Ь о И(*ГМ*)]£, (А.12) 
with ft(t) = f{aef). After truncating the infinite product in Eq. (16), with 1 - v replaced 
by i/, we obtain the transfer function 

K,n(s)=jr^пt
k S+Ak,v ( А Л З ) 

" ~ V'S fc=2 k ~ V S + Xk'v 
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with (3k and ak as in Eq. (A.6) to be replaced by fik and Л& as in Eq. (14). Differentiation in 
Eq. (A. 12) will result in cancelling the s in the transfer function, which yields the space-state 
representation 

^z*(t) = P*z*{t) + Q V ( t j , tl>n(t) = R*z*(t) + 5 V ( t ) , (A.14) 

with the input and output signals defined by 

ф) = г(Г^уf{aet)' hn{r)=фп (ln D h- (A,15) 

Here the matrices P£xn> Qnxi> Щхп an(^ ^ l x i °bey the equation 

k„,n(s) = R*(sl - P*)-XQ* + 5*. (A.16) 

The back substitution similar to Eq. (A.11) provides for the causal model Eqs. (20). 

A P P E N D I X 3 

We will keep the notation ф(1ш) of the Fourier transform of the function ip(t) 

/

oo 
ip{t)e-iutdt (A.17) 

-oo 

even if Fourier transform does not exist but (p(t) such that ip(t) — 0 for t < 0 is Laplace-
transformable, with a convergence abscissa a > 0. In this case, the spectrum ф{ш) is 
defined as 

~ roo "I 
/ ip{i)e~stdt, Res > a\ 

v 0 J sz=iuj 

(A.18) 
/o 

Now, since the spectrum of the fractional differentiator |£(icj)| is unbounded as ш -¥ oo, 

ф(ш) :-

le spectn 
the operator 

В : f{t) —• h(t) (A.19) 

is unbounded in the customary metric function spaces rendering the fractional differentia
tion ill-posed. 

It will be shown here that sAv,n(s), with kv,n(s), as in Eq. (A.14), introduces the regu-
larizer 

Ba : /(ae<) —• ha(t) (A.20) 

such that: 1) Ba is a bounded operator in the domain of B, and 2) 

\im(Baf)(t = ln-)=(Bf)(x). (A.21) 

We rewrite Eq. (A. 12) as 

Чае*) = ! ^ - ^ | ( / ( ^ ) * А ; Л 0 ) ( а е * ) - - (А.22) 

and compare it with 

hn{aet) = ^j-7)jt{f{tYK,n{i)){aet)-v- (A.23) 
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If we shall do the Fourier transform of the right-hand side of Eq. (A.23), the attenuation 
and differentiation will account for the following: 

Нп{аег) <—> _J/)aiyf(i(x> + v)kv,n(iu + v). (A.24) 

It is easy to see that kv,n{iuj) as in Eq. (13), as well as \u-£j \гьоки^п{ги)\ 
—oo < и < oo. Therefore, by the Marcinkiewicz-Mikhlin theorem on 
ers [13], the operator JB* is bounded in LP(R), 1 < p < oo. 

It we let the regularization constant be 
а = (Лп)-1 (А.25) 

and take into account the formulas Eqs. (A.12)-(A.17), the property lim Baf = Bf has 
OL—fr-OO 

been obviously fulfilled. • 
Now we turn to asymptotic estimates. Let 

K,n(s) = kv{s)eu,n(s). (A.26) 
Then, dropping the index u, 

hn(s)=h(s)en(s). (A.27) 
Notice first that the function 

*•<'> = J^hi <A-2 8> 
with a as in Eq. (A.25) is asymptotically equivalent to en(s) as a -> 0 and |s| -> ooor 
|s| —> 0. In the time domain, 

ёп(*)=а1 /1/* , /-1ЕЦ(Ап*)1 /], (А.29) 
where Ev(z) is the Mittag-LefHer function and E'v its derivative. Replacing en(s) by en(s), 
denote, for t > 0, 

en(t) :~ {Л(*) - h(t)*en(t)}, a —• 0. (A.30) 
For v — 1/2, another asymptotically equivalent function 

en(s) = 7 , l 4 1 / 9 <—> —==e~* (A.31) 
w (as + 1)1 /2 л/тга? 

can be used. It is easy to show (for instance, by repeated integration by parts) that 

Г h(t - r) exp ( - - ) ( т т а т ) " 1 / 2 ^ = h(t) - %h'(t) + \*2ti'{t) + 0(a3). (A.32) 
Jo \ a/ 2 8 

Thus 
ea{t) = ^h'{t) + 0(a3), (А.ЗЗ) 

i.e., the asymptotic error does not depend on h(t) but rather on its derivative. 
In the frequency domain, the relative error is 

ёп(ш) = {\ёп{ш)\ - \e(icj)\) / |en(i(j)|, (A.34) 
where 

|en(Uj)| = ( a V + l ) - | / / 2 . (А.35) 
For v = 1/2, 

n , 

ИпЫ| = П ГГТ 
k=lK 2 

hiu - \ + (k - 1) ( ^ c o t h f ) - , (A,6) 
\iu + (k - 1) 

and for any u, the value |en(o;) | does not exceed en/n, where 0,17 > £3 > £4 > £5 
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P.C. Рутман 
О ФИЗИЧЕСКИХ ИНТЕРПРЕТАЦИЯХ ФРАКТАЛЬНОГО 

ИНТЕГРИРОВАНИЯ И ДИФФЕРЕНЦИРОВАНИЯ 
Изучена связь между фрактальным исчислением и фрактальной геометрией, а также возмож

ность представления системы дробного порядка причинной динамической моделью. Проанализи
рованы некоторые из недавно предложенных моделей и показано, что они не могут рассматриваться 
как какие-либо динамические модели систем для дробного порядка, построенных с помощью фрак
талов. Линейные фильтры с постоянными параметрами имеют очень ограниченное использование 
в качестве аппроксимаций систем дробного порядка. Модель, предлагаемая в статье, дает пред
ставление пространственных состояний с параметрами, являющимися функциями независимых пе
ременных. Рассмотрена регуляризация фрактального дифференцирования и оценена его асимпто
тическая ошибка. Представлены результаты численных расчетов.* 


