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Abstract

A sufficient condition for asymptotic stability of the zero solution
to an abstract nonlinear evolution problem is given. The governing
equation is u̇ = A(t)u+F (t, u), where A(t) is a bounded linear operator
in Hilbert space H and F (t, u) is a nonlinear operator, ‖F (t, u)‖ ≤
c0‖u‖

1+p, p = const > 0, c0 = const > 0. It is not assumed that the
spectrum σ := σ(A(t)) of A(t) lies in the fixed halfplane Rez ≤ −κ,
where κ > 0 does not depend on t. As t → ∞ the spectrum of A(t) is
allowed to tend to the imaginary axis.

MSC: 34G20; 447J05; 47J35

Key words: dynamical systems; stability; asymptotic stability

1 Introduction

Let H be a Hilbert space. Consider the problem

u̇ = A(t)u+ F (t, u), t ≥ 0, (1)

u(0) = u0, (2)

where u̇ = du
dt is the strong derivative, A(t) is a linear closed densely defined

in H operator with the domain D(A), independent of t, u0 ∈ D(A). We
assume that F (t, u) is a nonlinear mapping, locally Lipschitz with respect
to u, and satisfying the following inequality

‖F (t, u)‖ ≤ c0‖u‖
1+p, p > 0, c0 > 0, (3)
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where p and c0 are constants. We also assume that

Re(Au, u) ≤ −γ(t)‖u‖2, ∀u ∈ D(A), (4)

where
γ(t) > 0, lim

t→∞
γ(t) = 0, (5)

γ(t) =
b1

(b0 + t)d
, d = const ∈ (0, 1], (6)

b0 and b1 are positive constants. Assumptions (5) are satisfied by the func-
tion (6). However, our method can be applied to many other γ(t) satisfying
assumptions (5).

Definition 1. The zero solution to equation (1) is called Lyapunov stable

if for any ǫ > 0, sufficiently small, there exists a δ = δ(ǫ) > 0, such that if

‖u0‖ < δ, then the solution to problem (1) exists on [0,∞) and ‖u(t)‖ ≤ ǫ.
If, in addition,

lim
t→∞

‖u(t)‖ = 0, (7)

then the zero solution is asymptotically stable.

Basic results on the Lyapunov stability of the solutions to (1) one finds
in [1]-[4], and in many other books and papers. In [4] these results are
established under the assumption that the operator A(t) is bounded,D(A) =
H, and A(t) has property B(ν,N). This means ([4], p.178) that every
solution to the equation

u̇ = A(t)u (8)

satisfies the estimate

‖u(t)‖ ≤ Ne−ν(t−s)‖u(s)‖, t ≥ s ≥ 0, (9)

where N > 0 and ν > 0 are some constants. The quantity

κ := lim
t→∞

ln ‖u(t)‖

t
(10)

is called the exponent of growth of u(t). If Σ is the set of κ for all solutions
to (8), then

κs := sup
κ∈Σ

κ (11)

is called senior exponent of growth of solutions to (8). The general exponent
κg is defined as

κg := inf ρ, (12)
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where ρ is the exponent in the inequality

‖u(t)‖ ≤ Neρ(t−s)‖u(s)‖, t ≥ s ≥ 0. (13)

One has
κs ≤ κg, (14)

and the case κs < κg can occur (the Perron’s example, see [4], p.177). If
κg < 0 then the zero solution to (8) is Lyapunov asymptotically stable. If
A(t) = A does not depend on t and A is a bounded linear operator, then
κg < 0 if and only if the spectrum of A, denoted σ(A), lies in the halfplane
Rez ≤ κg < 0. In this case

‖eAt‖ ≤ N0e
κgt, (15)

and if ‖F (t, u)‖ ≤ q‖u‖, t ≥ 0, ‖u‖ < ρ, and q <
κg

N0
, then equation (1)

has negative general exponent also, so the zero solution to equation (1) is
Lyapunov asymptotically stable ([4], p.403).

If A = A(t), and for any solution to (8) estimate (9) holds with ν > 0,
and if (3) holds, then for any solution to (1) with ‖u0‖ ≤ δ and δ > 0
sufficiently small, estimate (9) holds with a different N = N1 and ν = ν1,
0 < ν1 ≤ ν (see [4], p.414). This means that the zero solution to (1) is
asymptotically stable under the above assumptions.

The basic new result of our work, Theorem 1 in Section 2, generalizes
the above results to the case when the assumption κg < 0 is not valid. We
allow the spectrum σ(A(t)) to approach imaginary axis as t → ∞. This is
the principally new generalization of the classical Lyapunov-Krein theory.
If ⊓ is the complex plane and l is the imaginary axis, then we assume that
σ(A(t)) ⊂ ⊓ for every t ≥ 0, but we allow limt→∞ d(σ(A(t)), l) = 0, where
d(σ, l) is the distance between two sets σ and l. The new stability result
is formulated in Theorem 1. In Lemma 1 an auxiliary result is formulated.
A proof of Lemma 1 differs in details from the one in [7]. In Section 2
Theorem 1 and Lemma 1 are formulated. In Section 3 proofs are given. In
Section 4 examples of applications of our method are given.

2 Formulation of the results

Lemma 1. Let the inequality

ġ(t) ≤ −γ(t)g(t) + a(t)g1+p(t) + β(t), (16)
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hold for t ∈ [0, T ),where g(t) ≥ 0 has finite derivative from the right at

every point t at which g(t) is defined, γ(t) ≥ 0, a(t) ≥ 0 and β(t) ≥ 0 are

continuous on R+ := [0,∞) functions, and p = const > 0. Assume that

there exists a µ(t) ∈ C1[0,∞), µ(t) > 0, µ̇(t) ≥ 0, such that

a(t)[µ(t)]−1−p + β(t) ≤ µ−1(t)[γ(t) − µ̇(t)µ−1(t)], t ≥ 0, (17)

µ(0)g(0) < 1. (18)

Then g(t) exists for all t ∈ [0,∞) and

0 ≤ g(t) < µ−1(t), ∀t ≥ 0. (19)

Theorem 1. Assume that conditions (1)-(6) hold and b1 > 0 is sufficiently

large. Then the zero solution to (1) is asymptotically stable for any fixed

initial data u(0).

3 Proofs

Proof of Lemma 1. Let v(t) := g(t)e
∫ t

0
γ(s)ds := g(t)q(t). Then (16) yields

v̇(t) ≤ q(t)a(t)q−(1+p)(t)v1+p(t) + q(t)β(t), v(0) = g(0), t > 0. (20)

We do not assume a priori that v(t) is defined for all t ≥ 0. This conclusion
will follow from our proof. Denote η(t) := q(t)µ−1(t), η(0) = µ−1(0) > g(0).
Using (18) and (20), one gets

v̇(0) ≤ a(0)v1+p(0) + β(0) ≤ µ−1(0)[γ(0) − µ̇(0)µ−1(0)] = η̇(0). (21)

Since v(0) = g(0) < η(0) = µ−1(0) by (18), and v̇(0) ≤ η̇(0), it follows that

v(t) < η(t), 0 ≤ t < τ, (22)

where τ > 0 is the right end of the maximal interval on which v(t) < η(t),
i.e., τ = sup{t : v(t)<η(t)} t. Let us prove that τ = ∞. Note that if (22) holds,
then

v̇(t) ≤ η̇(t), 0 ≤ t < τ. (23)

Indeed, using (17) and (20) one obtains

v̇(t) = q(t)(ġ + γg) ≤ q(t)µ−1(t)[γ(t)− µ̇(t)µ−1(t)] = η̇(t), (24)

as claimed. If τ < ∞, then (22) and (23) imply

v(τ − 0)− v(0) ≤ η(τ − 0)− η(0). (25)

4



Since η(t) ∈ C1[0,∞) by definition, inequality (25) implies that v(τ−0) < ∞
and, since v(0) = g(0) < µ−1(0) = η(0), so that v(0) < η(0), one gets

v(τ − 0) < η(τ − 0) < ∞. (26)

Inequality (26) implies that τ = ∞, because τ is the maximal interval [0, τ)
of the existence of v, and if τ < ∞ is the right end of the maximal interval
of the existence of v then limt→τ−0v(t) = ∞, which contradicts (26). Thus,
τ = ∞ and, therefore, T = ∞.
Lemma 1 is proved. �

Proof of Theorem 1. Let ‖u(t)‖ = g(t). Multiply (1) by u(t), take the real
part, and get

g(t)ġ(t) ≤ −γg2(t) + c0g
2+p(t). (27)

Since g ≥ 0, inequality (27) is equivalent to

ġ(t) ≤ −γ(t)g(t) + c0g
1+p(t). (28)

If g(t) > 0, then (28) is obviously equivalent to (27). If g(t) = 0 ∀t ∈ ∆,
where ∆ ⊂ R+ is an open set, then u(t) = 0 ∀t ∈ ∆, so u(t) = 0 ∀t ≥ 0
by the uniqueness of the solution to the Cauchy problem for equation (1).
This uniqueness holds due to the assumed local Lipschitz condition for F . If
g(t0) = 0, but g(t) 6= 0 for (t0, t0+δ) for some δ > 0, then one divides (27) by
g(t) for t ∈ (t0, t0+δ), then one passes to the limit t → t0+0 and gets (28) at
t = t0. Let us explain the meaning of ġ(t0) at a point where u(t0) = 0. The

function u̇(t) is continuous and it is known that d‖u(t)‖
dt ≤ ‖u̇(t)‖. We define

ġ(t0) = lims→+0 ‖u(t0 + s)‖s−1. This limit exists and is equal to ‖u̇(t0)‖.
Choose

µ(t) = µ(0)e
1
2

∫ t

0
γ(s)ds, µ̇(t)µ−1(t) = γ(t)/2. (29)

Remark 1. Note that limt→∞ µ(t) = ∞ if and only if
∫∞
0 γ(t)dt = ∞. If

limt→∞ µ(t) = ∞, then limt→∞ ‖u(t)‖ = 0. Under the assumption (6) one

has
∫∞
0 γ(t)dt = ∞, and we use this to derive some results about asymptotic

stability. If d > 1 in (6), then
∫∞
0 γ(t)dt < ∞, and our methods can be used

for a derivation of some results on stability, rather than asymptotic stability.

Condition (18) is satisfied if

µ(0) < [g(0)]−1, (30)

and we choose µ(0) so that this inequality holds. Using (29), one sees that
inequality (17) is satisfied if

2c0µ
−p(0) ≤ γ(t)e

p

2

∫ t

0 γ(s)ds, ∀t ≥ 0. (31)
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Inequality (31) is satisfied if

2c0µ
−p(0) ≤ γ(0), (32)

provided that

γ(0) ≤ γ(t)e
p

2

∫ t

0 γ(s)ds ∀t ≥ 0. (33)

Let us first use assumption (6) with d ∈ (0, 1):

∫ t

0
γ(s)ds = b1

(b0 + t)1−d − b1−d
0

1− d
, 0 < d < 1. (34)

In this case γ(0) = b1b
−d
0 , and inequality (33) holds if

2d < pb1b
1−d
0 . (35)

Inequality (35) is a sufficient condition for the function on the right of (33) to
have non-negative derivative for all t ≥ 0, i.e., to be monotonically growing
on [0,∞), if γ(t) is defined in (6). Conditions (32) and (35) hold if

2c0µ
−p(0) ≤ b1b

−d
0 and 2d < pb1b

1−d
0 . (36)

For any fixed four parameters d, c0, p, and µ(0) < [g(0)]−1, where d ∈ (0, 1),
c0 > 0, p > 0, and µ(0) > 0, inequalities (36) can be satisfied by choosing
sufficiently large b1 > 0. With the choice of µ(t), given in (29), and the
parameters µ(0), b0 and b1, chosen as above, one obtains inequality (19):

0 ≤ g(t) <
e
−

b1
2(1−d)

[(b0+t)1−d−b1−d
0 ]

µ(0)
, d ∈ (0, 1). (37)

Since g(t) = ‖u(t)‖, inequality (37) implies asymptotic stability of the zero
solution to equation (1) for any initial value of u0, that is global asymptotic
stability. Moreover, (37) gives a rate of convergence of ‖u(t)‖ to zero as
t → ∞.

Consider now the case d = 1, γ(t) = b1(b0 + t)−1,

∫ t

0
γ(s)ds = b1 ln

b0 + t

b0
, e

∫ t

0
γ(s)ds =

(

b0 + t

b0

)b1

. (38)

In this case the choice of µ(t) in (29) yields

µ(t) = µ(0)

(

b0 + t

b0

)b1/2

. (39)
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Choose µ(0) so that (30) holds, and fix it. Then inequality (31) holds if

2c0µ
−p(0) ≤

b1
b0 + t

(b0 + t)
b1p
2

b
b1p
2

0

, ∀t ≥ 0. (40)

Choose b1 so that
b1p > 2, p > 0. (41)

Then (40) holds if and only if it holds for t = 0, that is:

2c0µ
−p(0) ≤

b1
b0
. (42)

Inequality (42) is satisfied if either b1 is chosen sufficiently large for any fixed
b0, or b0 is chosen sufficiently small for any fixed b1 > 2p−1 (see (41)). In
either case one concludes that the zero solution to equation (1) is globally
asymptotically stable.
Theorem 1 is proved. �

4 Additional results. Examples

Example 1. Consider two equations:

u̇(t) = Au(t), (43)

v̇(t) = Av(t) +B(t)v(t), t ≥ 0, (44)

where A and B(t) are bounded linear operators in H, A does not depend on

t, and
∫ ∞

0
‖B(t)‖dt < ∞. (45)

We assume that all the solutions to (43) are bounded. Then by the Banach-
Steinhaus theorem the following inequality holds:

sup
t≥0

‖etA‖ ≤ c < ∞. (46)

This implies Lyapunov’s stability of the zero solution to (43), and the inclu-
sion σ(A) ⊂ ⊓ := {z : Rez ≤ 0}, which implies Re(Au, u) ≤ 0 ∀u ∈ H. A
well-known result is (see, e.g., [2]):

If (45) and (46) hold then the zero solution to (44) is Lyapunov stable.

The usual proof (see [2], where H = R
n) is based on the Gronwall in-

equality. We give a new simple proof based on Lemma 1. Let g(t) := ‖v(t)‖.
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Multiply (44) by u, take the real part and use the inequality Re(Av, v) ≤ 0
to get: gġ ≤ ‖B(t)‖g2(t), t ≥ 0. Using the inequalities g(t) ≥ 0 and (45),
one obtains

ġ(t) ≤ ‖B(t)‖g(t), g(t) ≤ g(0)e
∫
∞

0
‖B(s)‖ds := c1g(0). (47)

Therefore, the zero solution to (44) is Lyapunov stable. Moreover, since
|ġ(t)| ∈ L1(R+), it follows that there exists the finite limit: limt→∞ ‖v(t)‖ :=
V.

Example 2. Consider a theorem of N. Levinson in R
n (see [6] and [5],

pp. 159-164):
If (45) and (46) hold, then for every solution v to (44) one can find a

solution u to (43) such that

lim
t→∞

‖u(t)− v(t)‖ = 0. (48)

We give a new short proof of a generalization of this theorem to an
infinite-dimensional Hilbert space H. If (45) and (46) hold, then, as we have
proved in Example 1, supt≥0 ‖v(t)‖ < ∞, supt≥0 ‖u(t)‖ < ∞. If u(0) = u0,
then u(t) = etAu0 solves (43). Let v(t) solve the equation

v(t) = etAu0 −

∫ ∞

t
e(t−s)AB(s)v(s)ds. (49)

A simple calculation shows that v(t) solves (44) and

‖v(t)−u(t)‖ ≤

∫ ∞

t
‖e(t−s)A‖‖B(s)‖‖v(s)‖ds ≤ C

∫ ∞

t
‖B(s)‖ds → 0, t → ∞,

(50)
where

C = sup
t≥0

‖etA‖ sup
t≥0

‖v(t)‖ < ∞.

The generalization of Levinson’s theorem for H is proved. �

Equation (49) is uniquely solvable in H by iterations for all sufficiently
large t because for such t the norm of the integral operator in (49) is less
than one. The unique solution to (49) for sufficiently large t defines uniquely
the solution v to (44) which satisfies (48).

Remark 2. Our methods are applicable to the equation (1) with a force

term: u̇ = A(t)u+ F (t, u) + f(t).
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