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Abstract

Let α ∈ (1, 2) and Xα be a symmetric α-stable (SαS) process with stationary increments given by
the mixed moving average

Xα(t) =

∫

X

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du), t ∈ R,

where (X,X , µ) is a standard Lebesgue space, G : X × R 7→ R is some measurable function and
Mα is a SαS random measure on X ×R with the control measure m(dx, du) = µ(dx)du. Assume,
in addition, that Xα is self-similar with exponent H ∈ (0, 1). In this work, we obtain a unique in
distribution decomposition of a process Xα into three independent processes

Xα
d
= X(1)

α +X(2)
α +X(3)

α .

We characterize X
(1)
α and X

(2)
α and provide examples of X

(3)
α .

The first process X
(1)
α can be represented as

∫

Y

∫

R

∫

R
e−κs(F (y, es(t+ u))− F (y, esu))Mα(dy, ds, du),

where κ = H − 1/α, (Y,Y, ν) is a standard Lebesgue space and Mα is a SαS random measure on
Y ×R×R with the control measure m(dy, ds, du) = ν(dy)dsdu. Particular cases include the limit
of renewal reward processes, the so-called “random wavelet expansion” and Takenaka process. The

second process X
(2)
α has the representation

∫

Z

∫

R

(
G1(z)((t+ u)κ+ − uκ+) +G2(z)((t+ u)κ− − uκ−)

)
Mα(dz, du), if κ 6= 0,

∫

Z

∫

R

(
G1(z) (ln |t+ u| − ln |u|) +G2(z)(1(0,∞)(t+ u)− 1(0,∞)(u))

)
Mα(dz, du), if κ = 0,
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where (Z,Z, υ) is a standard Lebesgue space and Mα is a SαS random measure on Z × R with
the control measure m(dz, du) = υ(dz)du. Particular cases include linear fractional stable motions,

log-fractional stable motion and SαS Lévy motion. An example of a process X
(3)
α is

∫ 1

0

∫

R

(
(t+ u)κ+1[0,1/2)({x+ ln |t+ u|})− uκ+1[0,1/2)({x+ ln |u|})

)
Mα(dx, du),

where Mα is a SαS random measure on [0, 1)×R with the control measure m(dx, du) = dxdu and
{·} is the fractional part function.

1 Introduction

Our goal is to understand the structure of random processes {Xα(t)}t∈R with the following three
characteristics: Xα is symmetric α-stable with 1 < α < 2, it is self-similar with index H ∈ (0, 1) and
it is a (stationary increments) mixed moving average. We shall first define these terms.

A random variable ξ is symmetric α-stable (SαS, in short) with α ∈ (0, 2] if its characteristic
function satisfies E exp(iθξ) = exp(−σα|θ|α) for some scale factor σ > 0 and all θ ∈ R. A real-valued
stochastic process {Xα(t)}t∈R is SαS with α ∈ (0, 2] if all its linear combinations are SαS random
variables. The most common way to represent a SαS process Xα is through the so-called spectral
representation

{Xα(t)}t∈R
d
=

{∫

S
ft(s)Mα(ds)

}

t∈R
, (1.1)

where
d
= stands for the equality in the sense of the finite-dimensional distributions (see Samorodnitsky

and Taqqu (1994)). Here, Mα is a SαS random measure with the control measure m, (S,m) is a
measure space and {ft}t∈R is a collection of deterministic functions. The random integrator Mα(ds),
s ∈ S, can be viewed heuristically as a sequence of independent stable random variables with scale
factor m(ds). The representation (1.1) means that the characteristic function of Xα is given by

E exp
{
i

n∑

k=1

θkXα(tk)
}
= exp

{
−
∫

S

∣∣∣
n∑

k=1

θkftk(s)
∣∣∣
α
m(ds)

}
, (1.2)

where θ1, t1, . . . , θn, tn ∈ R. One must therefore require that {ft}t∈R ⊂ Lα(S,m). The kernel ft(s) in
(1.1) characterizes the process Xα and our goal is to understand the possible structures of such kernels
when Xα is, in addition, self-similar and a (stationary increments) mixed moving average.

The process Xα is said to be self-similar with index H > 0, if, for any c > 0,

{Xα(ct)}t∈R
d
= {cHXα(t)}t∈R. (1.3)

The condition 1 < α < 2 implies 0 < H < 1 (Corollary 7.1.11 in Samorodnitsky and Taqqu (1994)).
A SαS process {Xα(t)}t∈R is called a (stationary increments) mixed moving average, if it can be

represented as

{Xα(t)}t∈R
d
=

{∫

X

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du)

}

t∈R
, (1.4)

where (X,X , µ) is some measure space and SαS random measureMα has the control measure µ(dx)du
on X×R. We call processes of the form (1.4) (stationary increments) mixed moving averages because,
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heuristically, if one took the derivative of Xα, one would get a stationary process Ẋα with the repre-
sentation

∫
X

∫
R Ġ(x, t+u)Mα(dx, du) which is of the so-called mixed moving average type. The mixed

part comes from the presence of the additional variable x in the representation of Ẋα; without x, Ẋα

would be the usual moving average. The class of (stationary) mixed moving averages was introduced
by Surgailis, Rosiński, Mandrekar and Cambanis (1993) as an important extension of the usual moving
averages. It is closed under linear combinations and the elements of the class are ergodic. This class
also appears in the decomposition of stationary symmetric stable processes established by Rosiński
(1995).

One example of processes with the above characteristics is linear fractional stable motion (see
Samorodnitsky and Taqqu (1994)) given by

∫

R

{
a
(
(t+ u)

H− 1

α
+ − u

H− 1

α
+

)
+ b

(
(t+ u)

H− 1

α
− − u

H− 1

α
−

)}
Mα(du), (1.5)

where a, b ∈ R, α ∈ (0, 2), H ∈ (0, 1), u+ = max{u, 0}, u− = max{−u, 0} and SαS random measure
Mα has the Lebesgue control measure on R. To obtain (1.5) from (1.4), take Y = {1}, µ(dx) = δ{1}(dx)

and G(1, du) = au
H−1/α
+ + bu

H−1/α
− . Another example is the limit of renewal reward processes (see

Pipiras and Taqqu (2000)) represented as

∫

R

∫

R

{
(t ∧ z − v)+ − (0 ∧ z − v)+

}
(z − v)

H− 2

α
−1

+ Mα(dz, dv), (1.6)

where Mα is a SαS random measure on R2 with the Lebesgue control measure m(dz, dv) = dzdv. To

obtain (1.6), take X = R, µ(dx) = dx and G(x, u) = (u ∧ 0 + x)+ x
H− 2

α
−1

+ in (1.4), and then make a
change of variables u = −z, x = z − v. We showed in Pipiras and Taqqu (2000) that the process (1.6)
is not a linear fractional stable motion in (1.5). Recall that, in contrast to the Gaussian case (α = 2)
where fractional Brownian motion is the only H–self-similar process with stationary increments, there
are many different H–self-similar processes with stationary increments in the stable case α ∈ (0, 2).
(See Samorodnitsky and Taqqu (1994) for additional examples.)

We are interested in the following problem:

Is there a way to somehow classify and characterize all stable self-similar
processes with stationary increments which have the representation (1.4)?

We assume that the mixing space X in (1.4) is the so-called standard Lebesgue space with a σ-algebra
X and a σ-finite measure µ, and that SαS measure Mα has the control measure m(dx, du) = µ(dx)du
on X × R. Recall that a standard Lebesgue space is a standard Borel space with a σ-finite measure
and that a standard Borel space is a measurable space measurably isomorphic (i.e. there is a one-
to-one, onto and bimeasurable map) to a Borel subset of a complete separable metric space. For
example, Rn with a measure consisting of Lebesgue measure and discrete point masses is a standard
Lebesgue space. We also implicitly assume that G : X × R 7→ R is a measurable function and that
{Gt}t∈R ⊂ Lα(X × R, µ(dx)du), where Gt(x, u) = G(x, t + u) − G(x, u), t, u ∈ R, x ∈ X, so that
the process Xα in (1.4) is well-defined. Observe also that stationarity of the increments is already
embedded in the representation (1.4) whereas self-similarity requires additional assumptions on G.

To answer the above question, we will use results obtained in Pipiras and Taqqu (2001a). In that
paper, we showed that, if α ∈ (1, 2), every self-similar stationary increments mixed moving average
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Xα is generated by a nonsingular measurable multiplicative flow and by a related cocycle and a semi-
additive functional (see Section 2 below). Then, by using the so-called Hopf’s decomposition of a flow
into its dissipative and conservative parts, we established a unique decomposition in distribution of
Xα into two independent processes

Xα
d
= XD

α +XC
α , (1.7)

where the process XD
α is generated by a nonsingular dissipative flow and XC

α is generated by a non-
singular conservative flow. In this paper, we study in greater detail the two components of the
decomposition (1.7). This will allow us to obtain a more refined decomposition than (1.7).

The paper is organized as follows. In Section 2, we recall some basic definitions from Pipiras
and Taqqu (2001a) which will be used here. Section 3, where we describe cocycles and semi-additive
functionals for various types of flows, is of a technical nature. In Section 4, we show that processes Xα,
generated by dissipative flows, can be completely characterized. Any such process can be represented
in distribution as ∫

Y

∫

R

∫

R
e−κs(F (y, es(t+ u))− F (y, esu))Mα(dy, ds, du), (1.8)

where (Y,Y, ν) is some standard Lebesgue space, F : Y × R 7→ R is a measurable function, Mα is
a SαS random measure on Y × R × R with the control measure ν(dy)dsdu and κ = H − 1/α (see
Theorem 4.1). We also mention some examples which, together with a further study of processes (1.8),
can be found in Pipiras and Taqqu (2001b).

In Sections 5–8, we consider processes generated by conservative flows. According to Theorem 5.1
in Section 5, any process Xα, generated by the simplest conservative flow, namely an identity flow,
can be represented in distribution as

∫

Z

∫

R
(G1(z)((t+ u)κ+ − u

κ
+) +G2(z)((t+ u)κ− − u

κ
−))Mα(dz, du), if κ 6= 0, (1.9)

∫

Z

∫

R
(G1(z)(ln |t+ u| − ln |u|) +G2(z)(1(0,∞)(t+ u)− 1(0,∞)(u)))Mα(dz, du), if κ = 0, (1.10)

where (Z,Z, υ) is a standard Lebesgue space, G1, G2 : Z 7→ R are some functions and a SαS random
measure Mα has the control measure υ(dz)du. We call processes (1.9) mixed linear fractional stable
motions (mixed LFSM, in short) because the usual linear fractional stable motions (that is, when
Z = {1} and υ = δ{1}) are special cases of processes (1.9). Since processes (1.10) can be viewed as
limiting cases of processes (1.9) when κ→ 0 (for details, see Definition 5.1 below), we shall call them
mixed LFSM as well. Note that the usual log-fractional stable motion (when Z = {1}, υ = δ{1} and
G2 ≡ 0) and the stable Lévy motion (when Z = {1}, υ = δ{1} and G1 ≡ 0) are special cases of (1.10).

In Sections 6 and 7, we decompose a process generated by a conservative flow into a mixed LFSM
and, in analogy to Rosiński (1995), a process of the “third kind”. An example of a process of the
“third kind” is given in Section 8.

In Section 9, we obtain a decomposition of self-similar processes with stationary increments, having
the representation (1.4). This is in the spirit of the decomposition obtained by Rosiński in the context
of stationary processes. By using (1.7) and results from Sections 4–8, we show that, for any α ∈ (1, 2),
H > 0, the H–self-similar process Xα with stationary increments, having the representation (1.4), can
be uniquely decomposed in distribution into three independent processes

Xα
d
= X(1)

α +X(2)
α +X(3)

α . (1.11)
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The process X
(1)
α in (1.11) is the first process XD

α in the decomposition (1.7). It is generated by a
dissipative flow and, by results of Section 4, has the representation (1.8). The sum of the two processes

X
(2)
α and X

(3)
α in (1.11) is the second process XC

α in the decomposition (1.7). The process X
(2)
α has

the representation (1.9) or (1.10), depending on whether κ 6= 0 or κ = 0, that is, it is a mixed LFSM.

The process X
(3)
α is H–self-similar process with stationary increments, generated by a conservative

flow, which does not have a mixed LFSM component. An example is given in Section 8.
The decomposition (1.11), which is not the same as that of Rosiński, allows one to make a finer

distinction between processes. For example, both linear fractional stable motion (1.5) and the limit
(1.6) of the renewal reward processes, were they to be differentiable, would have a derivative which
is dissipative according to Rosiński’s decomposition. According to our decomposition however, while
linear fractional stable motion is conservative, the limit of the renewal reward processes is dissipative.
This allows us to distinguish these two processes and conclude, as noted in Pipiras and Taqqu (2001a),
that they have different finite-dimensional distributions.

Finally, in Section 10, we draw connections between processes X
(i)
α , i = 1, 2, 3, and the underlying

flow in the decomposition (1.11) when the representation (1.4) of the process Xα is minimal.

Remark. When we investigate the processes XD
α and XC

α in the decomposition (1.7), we assume α ∈
(0, 2). The restriction α ∈ (1, 2) appears only in Sections 7 and 9, where we refine the decomposition
(1.7) to get (1.11). As argued in the remark following Theorem 4.2 of Pipiras and Taqqu (2001a),
the decomposition (1.7) is still valid when α ∈ (0, 1], provided that the integral

∫ t
−∞ e−(t−s)Xα(s)ds

is well-defined. Were the decomposition (1.7) valid for α ∈ (0, 1] in general, the results of the present
paper would extend to α ∈ (0, 2) as well.

2 Multiplicative flows

We first recall some basic definitions from Pipiras and Taqqu (2001a). Let (X,X , µ) be a standard
Lebesgue space, as defined in Section 1, α ∈ (0, 2) and H > 0. Set also

κ = H −
1

α
. (2.1)

If the mixed moving average (1.4) is self-similar, then

{
c−HXα(ct)

}
t∈R

=

{∫

X

∫

R
c−κ(G(x, c(t+ u))−G(x, cu))c−

1

αMα(dx, dcu)

}

t∈R

d
=

{∫

X

∫

R
c−κ(G(x, c(t+ u))−G(x, cu))Mα(dx, du)

}

t∈R

d
=

{∫

X

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du)

}

t∈R
= {Xα(t)}t∈R. (2.2)

But while mixed moving averages, as defined by (1.4), are always SαS and have stationary increments,
they are not necessarily self-similar. We need to choose G such that Xα defined by (1.4) is self-similar
and we also want to associate a flow to the process Xα. The following definition achieves these two
goals.
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Definition 2.1 A SαS, H–self-similar process Xα with stationary increments, having the representa-
tion (1.4), is said to be generated by a nonsingular measurable multiplicative flow {ψc}c>0 on (X,X , µ)
associated with G (or simply generated by a flow {ψc}c>0) if, for all c > 0 and t ∈ R,

c−κ (G(x, c(t+ u))−G(x, cu))

= bc(x)

{
d(µ ◦ ψc)

dµ
(x)

}1/α
(G(ψc(x), t+ u+ gc(x))−G(ψc(x), u+ gc(x))) (2.3)

a.e. µ(dx)du, where {bc}c>0 and {gc}c>0 is a cocycle and a semi-additive functional for the flow {ψc}c>0,
respectively, and

supp {G(x, t+ u)−G(x, u), t ∈ R} = X × R a.e. µ(dx)du. (2.4)

We first explain some of the terms used in this definition and then provide some insight in subse-
quent remarks. A family {ψc}c>0 of measurable maps from X onto X is called a multiplicative flow if
ψ1(x) = x and

ψc1(ψc2(x)) = ψc1c2(x), (2.5)

for all c1, c2 > 0 and x ∈ X. Note that relations (2.5) and ψ1(x) = x imply that ψc has an inverse
ψ1/c. (In the literature, one typically considers additive flows {φt}t∈R which satisfy the property
φt1(φt2(x)) = φt1+t2(x), for all t1, t2 ∈ R and x ∈ X. Physically, think of a particle in position x at
time t = 0. Then φt(x) is the position of the particle at time t. To go from multiplicative to additive
flows, one sets φt = ψet .) It is said to be nonsingular if µ(ψ−1c (B)) = 0 if and only if µ(B) = 0, for every
c > 0 and B ∈ X , and measurable if the map ψc(x) : (0,∞)×X 7→ X is measurable. (Nonsingularity
of the map ψc also means that this map is invertible and that its inverse is measurable. In the case
of a flow, these two conditions follow from (2.5), since the inverse of ψc is a measurable map ψ1/c.) A
measurable map bc(x) : (0,∞)×X 7→ {−1, 1} is said to be a cocycle for a flow {ψc}c>0 if

bc1c2(x) = bc1(x)bc2(ψc1(x)), (2.6)

for all c1, c2 > 0 and x ∈ X. A measurable map gc(x) : (0,∞)×X 7→ R is said to be a semi-additive
functional for a flow {ψc}c>0 if

gc1c2(x) =
gc1(x)

c2
+ gc2(ψc1(x)), (2.7)

for all c1, c2 > 0 and x ∈ X. The support supp {G(x, t+ u)−G(x, u), t ∈ R} in (2.4) is defined as
the minimal (in the a.e. sense) set A ∈ X ⊗ B such that, for all t ∈ R, G(x, t + u) − G(x, u) = 0 for
(x, u) ∈ X × R \A a.e. µ(dx)du.

Remarks

1. To get a feeling for condition (2.3), note that it implies the H-self-similarity of the process Xα.
Indeed, for any θ1, . . . , θn ∈ R, t1, . . . , tn ∈ R, n ≥ 1 and c > 0,

∫

X

∫

R

∣∣∣∣∣

n∑

k=1

θkc
−κ(G(x, c(tk + u))−G(x, cu))

∣∣∣∣∣

α

µ(dx)du
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=

∫

X

∫

R

∣∣∣∣∣

n∑

k=1

θk(G(ψc(x), tk + u+ gc(x))−G(ψc(x), u+ gc(x)))

∣∣∣∣∣

α
d(µ ◦ ψc)

dµ
(x) µ(dx)du

=

∫

X

∫

R

∣∣∣∣∣

n∑

k=1

θk(G(ψc(x), tk + u+ gc(x))−G(ψc(x), u+ gc(x)))

∣∣∣∣∣

α

(µ ◦ ψc)(dx)du

=

∫

X

∫

R

∣∣∣∣∣

n∑

k=1

θk(G(x, tk + u)−G(x, u))

∣∣∣∣∣

α

µ(dx)du,

since ψc(X) = X, which proves (2.2).

2. The condition (2.3) is equivalent to

c−κG(x, cu) = bc(x)

{
d(µ ◦ ψc)

dµ
(x)

}1/α
G(ψc(x), u+ gc(x)) + J(x, c) a.e. µ(dx)du, (2.8)

where J : X × (0,∞) 7→ R is some measurable function (Proposition 5.1 in Pipiras and Taqqu
(2001a)).

3. To understand condition (2.4), suppose on the contrary that the support of the functions
Gt(x, u) = G(x, t+u)−G(x, u), t ∈ R, is a set A ⊂ X×R with A 6= X×R. Because of the mixed
moving average structure of the kernel Gt, there is a set X0 ⊂ X such that A = X0 × R (see
Lemma 4.2 in Pipiras and Taqqu (2001a)). Condition A 6= X ×R then translates into X0 6= X.
Since the functions Gt, t ∈ R, vanish on the complement (X \X0) × R of the support X0 × R,
we may in principle define the flow {ψc}c>0 on X \ X0 arbitrarily because both sides of (2.3)
are zero anyway (assuming that ψc maps X \ X0 into itself). But this part of the flow would
then have nothing to do with the process Xα. Since we want our flow to capture the underlying
structure of the process Xα, we assume condition (2.4).

4. To get a feeling for (2.5), (2.6) and (2.7), assume that J ≡ 0 in (2.8) and let c1, c2 > 0. On one
hand, by (2.8),

(c1c2)
−κG(x, c1c2u) = bc1c2(x)

{
d(µ ◦ ψc1c2)

dµ
(x)

}1/α
G(ψc1c2(x), u+ gc1c2(x)). (2.9)

On the other hand, by iterating (2.8) twice, one gets

(c1c2)
−κG(x, c1c2u) = c−κ2

(
c−κ1 G(x, c1(c2u))

)

= c−κ2 bc1(x)

{
d(µ ◦ ψc1)

dµ
(x)

}1/α
G(ψc1(x), c2(u+ c−12 gc1(x)))

= bc1(x)bc2(ψc1(x))

{
d(µ ◦ ψc1)

dµ
(x)

d(µ ◦ ψc2)

dµ
(ψc1(x))

}1/α

G(ψc2(ψc1(x)), u+ c−12 gc1(x) + gc2(ψc1(x))). (2.10)

Relations (2.5), (2.6) and (2.7) imply that the right-hand sides of (2.9) and (2.10) are identical.
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Any measurable nonsingular multiplicative flow {ψc}c>0, as in (2.3), can be decomposed into its
dissipative and conservative parts. This decomposition is defined as follows (see, for example, Krengel
(1985), page 17, and Rosiński (1995), page 1171). Consider a single nonsingular map V : X → X.
Then, there exists a unique (in the a.e. sense) decomposition of X into two disjoint sets C and D
such that (i) C and D are V -invariant, that is, V C = C and V D = D, (ii) the restriction of V to C
is conservative, that is, there is no set A ⊂ C such that µ(A) > 0 and V −k(A), k ≥ 1, are disjoint,
and (iii) D = ∪∞k=−∞V

kB for some set B ∈ X , where V −k(B), k ≥ 1, are disjoint. This is called
the Hopf’s decomposition of the map V . The sets D and C are called the dissipative part and the
conservative part, respectively. Since each map ψc is nonsingular, it has the Hopf decomposition Dc

and Cc. One can show (see Krengel (1969), Lemma 2.7) that this decomposition is the same (in the
a.e. sense) for all maps ψc, c 6= 1, and that there is a set D, invariant under the flow, such that D = Dc,
c 6= 1. Then the decomposition of X into D and C := X \D is called the Hopf’s decomposition of the
flow {ψc}c>0. A flow is called dissipative if X = D a.e. and conservative if X = C a.e. In Pipiras and
Taqqu (2001a), we used the Hopf’s decomposition to establish the representation (1.7).

3 Cocycles and semi-additive functionals associated with various

flows

In this section we describe cocycles and semi-additive functionals for various types of multiplicative
flows. (Unless stated otherwise, all the flows are multiplicative.) We first consider a general dissipative
flow and then deal with the simplest conservative flow, namely an identity flow. The results we obtain
will be used in the following sections.

To deal with dissipative flows, we will often use the following result due to Krengel (1969), page
19 (see also Rosiński (1995), page 1176).

Theorem 3.1 (Krengel) Every measurable nonsingular dissipative flow {ψc}c>0 on a standard
Lebesgue space is null-isomorphic (mod 0) to a flow {ψ̃c}c>0 on some standard Lebesgue space
(Y × R,Y ⊗ B, ν(dy)du) defined by ψ̃c(y, u) = (y, u+ ln c) for all (y, u) ∈ Y × R and c > 0.

A null-isomorphism is a measurable, nonsingular, one-to-one and onto map with a measurable
inverse. While it may not be measure preserving, by being nonsingular, it preserves sets of measure
zero (“null” refers to nonsingular). Null-isomorphism (mod 0) in Theorem 3.1 means that there exist
two null sets N ⊂ X and N ′ ⊂ Y × R, and a null-isomorphism Φ : Y × R \N ′ 7→ X \N such that

ψc(Φ(y, u)) = Φ(ψ̃c(y, u)),

for all c > 0 and (y, u) ∈ Y × R \N ′. The sets X \N and Y × R \N ′ above are invariant under the
flows {ψc}c>0 and {ψ̃c}c>0, respectively, i.e. ψc(X \ N) = X \ N and similarly for ψ̃c. We will now
characterize cocycles and semi-additive functionals related to dissipative flows.

Lemma 3.1 Let {ψc}c>0 be a dissipative flow, {gc}c>0 and {bc}c>0 be a semi-additive functional and
a cocycle for {ψc}c>0, respectively. Suppose that Φ : Y × R \ N ′ 7→ X \ N is a null-isomorphism of
Theorem 3.1 between the flows {ψc}c>0 and {ψ̃c}c>0 described above. Let g̃c(y, u) = gc(Φ(y, u)), if
(y, u) ∈ Y ×R \N ′, and g̃c(y, u) = 0, if (y, u) ∈ N ′, and b̃c(y, u) = bc(Φ(y, u)), if (y, u) ∈ Y ×R \N ′,
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and b̃c(y, u) = 1, if (y, u) ∈ N ′. Then, {g̃c}c>0 is a semi-additive functional, {b̃c}c>0 is a cocycle for
{ψ̃c}c>0, and

g̃c(y, u) = g̃(y, u+ ln c)−
g̃(y, u)

c
, b̃c(y, u) =

b̃(y, u+ ln c)

b̃(y, u)
,

for all c > 0 and (y, u) ∈ Y × R, where g̃ : Y × R 7→ R and b̃ : Y × R 7→ {−1, 1} are some measurable
functions.

Proof: In view of the invariance of X \ N and Y × R \ N ′ under the flows {ψc}c>0 and {ψ̃c}c>0,
respectively, we may, without loss of generality, suppose that N and N ′ are empty sets. We will
prove the lemma for semi-additive functionals first. By definition of a semi-additive functional, for all
c1, c2 > 0 and x ∈ X,

gc1c2(x) = c−12 gc1(x) + gc2(ψc1(x)).

Then
gc1c2(Φ(y, u)) = c−12 gc1(Φ(y, u)) + gc2(ψc1(Φ(y, u)))

and, since ψc ◦ Φ = Φ ◦ ψ̃c, we obtain that

g̃c1c2(y, u) = c−12 g̃c1(y, u) + g̃c2(ψ̃c1(y, u)) (3.1)

= c−12 g̃c1(y, u) + g̃c2(y, u+ ln c1). (3.2)

The relation (3.1) shows that g̃c(y, u) = gc(Φ(y, u)) is a semi-additive functional for {ψ̃c}c>0. Moreover,
by taking u = 0 in (3.2), we get that

g̃c1c2(y, 0) = c−12 g̃c1(y, 0) + g̃c2(y, ln c1)

or, by letting ln c1 = v and c2 = c, that

g̃c(y, v) = g̃ev+ln c(y, 0)− c−1g̃ev(y, 0) = g̃(y, v + ln c)− c−1g̃(y, v),

where g̃(y, s) := g̃es(y, 0). Although g̃c(y, s) is measurable in c, y and s, we need to show that
it is measurable in c and y when s = 0. To do so, set u = − ln c1 in (3.2). Then g̃c2(y, 0) =
g̃c1c2(y,− ln c1) − c−12 g̃c1(y,− ln c1) =: g̃(c1, c2, y) and the function g̃(c1, c2, y) is measurable in its
arguments. Hence, by fixing c1 for which it is measurable in (c2, y), we obtain the measurability of
g̃c2(y, 0).

Let us now turn to cocycles. Since

b̃c1c2(y, u) = bc1c2(Φ(y, u)) = bc1(Φ(y, u))bc2(ψc1(Φ(y, u)))

= bc1(Φ(y, u))bc2(Φ(ψ̃c1(y, u)) = bc1(Φ(y, u))bc2(Φ(y, u+ ln c1)) = b̃c1(y, u)b̃c2(y, u+ ln c1),

{b̃c}c>0 is a cocycle for {ψ̃c}c>0, and, by letting u = 0, c2 = c and ln c1 = v, we get

b̃c(y, v) =
b̃ev+ln c(y, 0)

b̃ev(y, 0)
=
b̃(y, v + ln c)

b̃(y, v)
,

where b̃(y, u) = b̃eu(y, 0). (One may argue that the function b̃(y, u) is measurable as in the case above
of the semi-additive functional.) 2

We now turn to identity flows which are the simplest of conservative flows. A flow {ψc}c>0 on a
space (X,X , µ) is called an identity flow if ψc(x) = x, for all c > 0 and x ∈ X. In the following lemma
we characterize semi-additive functionals and cocycles for an identity flow.
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Lemma 3.2 Let {ψc}c>0 be an identity flow on a space X. If {bc}c>0 is a cocycle and {gc}c>0 is a
semi-additive functional for the flow {ψc}c>0, then

bc(x) = 1, gc(x) = (c−1 − 1)g(x),

for all c > 0 and x ∈ X, where g : X 7→ R is a measurable map.

Proof: The proof is straightforward. Since {bc}c>0 is a cocycle for an identity flow, by (2.6),
bc1c2(x) = bc1(x)bc2(x) for all c > 0 and x ∈ X. In particular, bc(x) = b√c(x)b√c(x) = (b√c(x))

2 and,
since b√c(x) ∈ {−1, 1}, bc(x) = 1. For the semi-additive functional {gc}c>0, we have

gc1c2(x) = c−12 gc1(x) + gc2(x) = c−11 gc2(x) + gc1(x),

for all c1, c2 > 0 and x ∈ X. This implies

(c−12 − 1)gc1(x) = (c−11 − 1)gc2(x),

or, by letting c1 = c and c2 = e,
gc(x) = (c−1 − 1)g(x),

where g(x) = (e−1 − 1)−1ge(x). 2

4 Processes generated by dissipative flows

In the next theorem, we show that SαS processes generated by dissipative multiplicative flows have a
canonical representation.

Theorem 4.1 Let α ∈ (0, 2), H > 0 and κ = H − 1/α. Let also Xα be a SαS processes generated by
a dissipative multiplicative flow as in Definition 2.1. Then there is a standard Lebesgue space (Y,Y, ν)
and a measurable function F : Y × R 7→ R such that

{Xα(t)}t∈R
d
=

{∫

Y

∫

R

∫

R
e−κs(F (y, es(t+ u))− F (y, esu))Mα(dy, ds, du)

}

t∈R
, (4.1)

whereMα is a SαS random measure on Y ×R×R with the control measure m(dy, ds, du) = ν(dy)dsdu.
Conversely, if the process Xα has the representation (4.1), then it is generated by a dissipative flow.

Proof: According to Theorem 3.1, there is a standard Lebesgue space (Y ×R,Y ×R, ν(dy)ds) and
a null-isomorphism Φ : Y × R 7→ X such that

ψc(x) = ψc(Φ(y, s)) = Φ(y, s+ ln c), (4.2)

for all c > 0 and (y, s) ∈ Y × R. In other words, the flow {ψc}c>0 on (X,X , µ) is null-isomorphic to
a flow {ψ̃c}c>0 on (Y ×R, ν(dy)ds) defined by ψ̃c(y, s) = (y, s+ ln c). (We may suppose that the null
sets in Theorem 3.1 are empty because, otherwise, we can replace X by X \N in the definition (1.4)
of Xα without changing its distribution.) By replacing x by Φ(y, s) in (2.8) and using (4.2), we get
for all c > 0

c−κG(Φ(y, s), cu) = bc(Φ(y, s))

{
d(µ ◦ ψc)

dµ
(Φ(y, s))

}1/α
G(Φ(y, s+ln c), u+ gc(Φ(y, s)))+J(Φ(y, s), c)

(4.3)
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a.e. ν(dy)dsdu. By Lemma 3.1, we also have that a cocycle {b̃c}c>0 = {bc ◦Φ}c>0 and a semi-additive
functional {g̃c}c>0 = {gc ◦ Φ}c>0 for the multiplicative flow {ψ̃c}c>0 can be expressed as

bc(Φ(y, s)) = b̃(y, s+ ln c)(b̃(y, s))−1, gc(Φ(y, s)) = g̃(y, s+ ln c)−
g̃(y, s)

c

for some measurable functions b̃, taking values in {−1, 1}, and g̃. Moreover, we have that (L denotes
the Lebesgue measure)

d(µ ◦ ψc)

dµ
(Φ(y, s)) =

d(µ ◦ Φ)

d(ν ⊗ L)
(ψ̃c(y, s))

{
dµ

d(ν ⊗ L) ◦ Φ−1
(Φ(y, s))

}−1
. (4.4)

To show (4.4), observe first that, since ψc ◦ Φ = Φ ◦ ψ̃c, we have

d(µ ◦ ψc ◦ Φ)

d(ν ⊗ L)
=
d(µ ◦ Φ ◦ ψ̃c)

d(ν ⊗ L)
. (4.5)

Relation (4.4) is merely a different expression for (4.5), since on one hand,

d(µ ◦ ψc ◦ Φ)

d(ν ⊗ L)
=
d(µ ◦ ψc ◦ Φ)

d(µ ◦ Φ)

d(µ ◦ Φ)

d(ν ⊗ L)
=
d(µ ◦ ψc)

dµ
◦ Φ

dµ

d(ν ⊗ L) ◦ Φ−1
◦ Φ,

and on the other hand,

d(µ ◦ Φ ◦ ψ̃c)

d(ν ⊗ L)
=
d(ν ⊗ L) ◦ ψ̃c
d(ν ⊗ L)

d(µ ◦ Φ ◦ ψ̃c)

d(ν ⊗ L) ◦ ψ̃c
=
d(µ ◦ Φ)

d(ν ⊗ L)
◦ ψ̃c,

where d((ν ⊗ L) ◦ ψ̃c)/d(ν ⊗ L) = 1 because the first component in ψ̃c(y, s) = (y, s+ ln c) remains the
same and the second is a translation. Now, by setting

G̃(y, s, u) = b̃(y, s)

{
dµ

d(ν ⊗ L) ◦ Φ−1
(Φ(y, s))

}1/α
G(Φ(y, s), u) (4.6)

and

F̃ (y, s, u) = b̃(y, s)

{
d(µ ◦ Φ)

d(ν ⊗ L)
(y, s)

}1/α
G (Φ(y, s), u)

in (4.3), we obtain that, for all c > 0,

c−κG̃(y, s, cu) = F̃

(
y, s+ ln c, u+ g̃(y, s+ ln c)−

g̃(y, s)

c

)
+ J̃(y, s, c)

a.e. ν(dy)dsdu, where J̃ is some measurable function. By making the change of variables cu = z, we
get

G̃(y, s, z) = cκF̃

(
y, s+ ln c,

z

c
+ g̃(y, s+ ln c)−

g̃(y, s)

c

)
+ cκJ̃(y, s, c)

a.e. ν(dy)dsdz. By the Fubini’s theorem, this relation holds a.e ν(dy)dsdzdc as well. Then, by setting
u = s+ ln c, we get c = eu−s and

G̃(y, s, z) = eκ(u−s)F̃ (y, u, es−uz + g̃(y, u)− es−ug̃(y, s)) + e(s−u)κJ̃(y, s, es−u)
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a.e. ν(dy)dsdzdu. Fix u = u0 for which this relation holds a.e. ν(dy)dsdz. Then

G̃(y, s, z) = e−κsF (y, es(z − g̃(y, s))) + J(y, s), (4.7)

a.e. ν(dy)dsdz for some measurable functions F and J . Now, by writing down the characteristic
functions, it is easy to see that (4.6) implies

{Xα(t)}t∈R
d
=

{∫

X

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du)

}

t∈R

d
=

{∫

Y

∫

R

∫

R
(G̃(y, s, t+ u)− G̃(y, s, u))M̃α(dy, ds, du)

}

t∈R
,

where M̃α is a SαS random measure on Y ×R×R with the control measure m̃(dy, ds, du) = ν(dy)dsdu.
Then, by using (4.7), we get that

{Xα(t)}t∈R
d
=

{∫

Y

∫

R

∫

R
e−κs(F (y, es(t+ u))− F (y, esu))M̃α(dy, ds, du)

}

t∈R
.

To prove the converse, suppose that the process Xα has the representation (4.1). By using an
argument similar to the one in the proof of Lemma 4.2 in Pipiras and Taqqu (2001a), one can conclude
that there is a set Y0 ∈ Y such that supp{e−κs(F (y, es(t+ u))− F (y, esu)), t ∈ R} = Y0 ×R×R a.e.
ν(dy)dsdu. Hence, by replacing Y with Y0 in (4.1), we may suppose that the condition (2.4) holds.
We may do this without loss of generality because this replacement does not change the distribution
of Xα. We shall now show that relation (2.8) is satisfied with G(y, s, u) = e−κsF (y, esu), where the x
in this relation stands for (y, s). Observe that, since c−κG(y, s, cu) = G(y, s + ln c, u) for any c > 0,
the condition (2.8) is satisfied with ψc(y, s) = (y, s+ ln c), bc(y, s) = 1, gc(y, s) = 0 and J(y, s, c) = 0.
One still needs to verify that {ψc}c>0 is a dissipative multiplicative flow. It is obviously a (measurable,
nonsingular) multiplicative flow. To see why it is dissipative, recall the definition given at the end
of Section 2 and observe that, say for c > 1, ψc(y, s) = (y, s + ln c), the sets ψkc (Y × [0, ln c)) =
Y × [k ln c, (k + 1) ln c), k ∈ Z, are disjoint and Y × R = ∪k∈Zψ

k
c (Y × [k ln c, (k + 1) ln c)). 2

Remark. Further study of mixed moving averages generated by dissipative flows can be found in
Pipiras and Taqqu (2001b). In particular, we provide there many examples of such processes, for
example, the limit process (1.6) of the renewal reward problem discussed above, the so-called “random
wavelet expansion” of Chi (2001), the Takenaka process of Takenaka (1991) and the “new” self-similar
processes (3.1) of Samorodnitsky and Taqqu (1990).

5 Processes generated by identity flows

We now turn to processes generated by conservative flows, that is, processes XC
α in the decomposition

(1.7). In contrast to Section 4, we will not provide a canonical representation of such processes because
conservative flows cannot be characterized as simply as dissipative flows are by the Krengel’s Theorem
3.1. Instead, in this and the following three sections, we will pursue a different idea. We begin by
showing that one can characterize processes generated by the simplest conservative flows, namely,
identity flows. Recall that a multiplicative flow {ψc}c>0 is an identity flow on (X,X , µ) if ψc(x) = x
for all x ∈ X and c > 0. The processes that we get will enter in our finer decomposition of the process
XC
α considered in Section 7 below.
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Theorem 5.1 Let α ∈ (0, 2) and H > 0. Suppose that the process Xα is generated by an identity flow
in the sense of Definition 2.1. Then there exist measurable functions G1, G2 : X 7→ R such that the
process {Xα(t)}t∈R can be represented as

∫

X

∫

R

(
G1(x)((t+ u)κ+ − u

κ
+) +G2(x)((t+ u)κ− − u

κ
−)
)
Mα(dx, du), if κ 6= 0, (5.1)

∫

X

∫

R

(
G1(x)(ln |t+ u| − ln |u|) +G2(x)(1(0,∞)(t+ u)− 1(0,∞)(u))

)
Mα(dx, du), if κ = 0, (5.2)

where Mα is a SαS random measure on X × R with the control measure m(dx, du) = µ(dx)du.
Conversely, if the process Xα has representation (5.1) or (5.2) with supp{G1, G2} = X a.e. µ(dx),

then it is generated by an identity flow.

Proof: If {ψc}c>0 is an identity flow, then relation (2.8), which is equivalent to (2.3), becomes

c−κG(x, cu) = bc(x)G(x, u+ gc(x)) + J(x, c) (5.3)

for all c > 0 a.e. µ(dx)du. Since {bc}c>0 is a cocycle and {gc}c>0 is a semi-additive functional for an
identity flow, we obtain from Lemma 3.2 that bc(x) = 1 and gc(x) = (c−1−1)g(x) for some measurable
function g. Then, relation (5.3) becomes

c−κG(x, cu) = G(x, u+ (c−1 − 1)g(x)) + J(x, c) (5.4)

for all c > 0 a.e. µ(dx)du. As in Cambanis, Maejima and Samorodnitsky (1992), page 104, it follows
from (5.4) that, for all c1, c2 > 0,

J(x, c1c2) = c−κ1 J(x, c2) + J(x, c1) = c−κ2 J(x, c1) + J(x, c2) (5.5)

a.e. µ(dx). We shall now consider the cases κ 6= 0 and κ = 0 separately.
Case κ 6= 0. It follows from the second equality in (5.5) that, for all c1, c2 > 0 and c1, c2 6= 1,

J(x, c1)

1− c−κ1
=
J(x, c2)

1− c−κ2

a.e. µ(dx). Then, for all c > 0, J(x, c) = J(x)(1 − c−κ) a.e. µ(dx) for some measurable function J .
Relation (5.4) now becomes

c−κG(x, cu) = G(x, u+ (c−1 − 1)g(x)) + J(x)(1− c−κ) (5.6)

for all c > 0 a.e. µ(dx)du, which by the Fubini’s theorem holds also a.e. µ(dx)dudc. By making a
change of variables, we obtain that G(x, z) = cκG(x, c−1(z + g(x))− g(x)) + J(x)(cκ − 1) and hence

G(x, z) + J(x) = cκ(G(x, c−1(z + g(x))− g(x)) + J(x))

= cκF (x, c−1(z + g(x)))

a.e. µ(dx)dzdc for some function F . By letting G̃(x, z) = G(x, z− g(x))+ J(x), we get that G̃(x, z) =
cκF (x, c−1z) a.e. µ(dx)dzdc. In particular, G̃(x, z) = zκ(c−1z)−κF (x, c−1z) a.e. µ(dx)dzdc when z > 0
and hence G̃(x, z) = zκv−κF (x, v) a.e. µ(dx)dvdz when z > 0. By fixing v = v0, for which this equation
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holds a.e. µ(dx)dz, we get that G̃(x, z) = zκG1(x) a.e. µ(dx)dz for some function G1 when z > 0.
Similarly, G̃(x, z) = zκ−G2(x) a.e. µ(dx)dz for some function G2 when z < 0. Hence

G(x, z) = G1(x)(z + g(x))κ+ +G2(x)(z + g(x))κ− − J(x) (5.7)

a.e. µ(dx)dz. The result (5.1) of the theorem now follows.
Case κ = 0. Since the second equality in (5.5) is now trivial, we shall use the first equality instead,

namely that, for all c1, c2 > 0, J(x, c1c2) = J(x, c2)+J(x, c1) a.e. µ(dx). By setting k(x, s) = J(x, es),
s ∈ R, we obtain that, for all s, t ∈ R,

k(x, s+ t) = k(x, s) + k(x, t) (5.8)

a.e. µ(dx). It is easy to see that for a.e. x ∈ X, the function k(x, s), s ∈ R, satisfies the conditions
(i)-(iv) of Proposition A.1 in the appendix. To understand, for example, why the condition (ii) is
satisfied, observe that, since Q is countable, one may first conclude that, for s ∈ R, the relation (5.8)
holds also for a.e. x ∈ X and for all t ∈ Q (the a.e. set here depends on s ∈ R only). Then, by using the
Fubini’s theorem, the relation (5.8) holds also for a.e. (x, s) and for all t ∈ Q, which now implies that,
for a.e. x ∈ X, the function k(x, s) satisfies the condition (ii). Proposition A.1 now implies that for a.e.
x ∈ X, k(x, s) = k(x, 1)s a.e. ds. We may suppose without loss of generality that the function k(x, 1)
is measurable (otherwise, consider k0(x, s) = k(x, s0s) where s0 is such that k(x, s0) is measurable).
Therefore, we deduce that for some measurable function G1 : X → R, J(x, c) = k(x, ln c) = G1(x) ln c
a.e. µ(dx)dc. Relation (5.4) can now be written as

G(x, cu) = G(x, u+ (c−1 − 1)g(x)) +G1(x) ln c

a.e. µ(dx)dcdu. By making the change of variables u+ c−1g(x) = v, we have

G(x, cv − g(x)) = G(x, v − g(x)) +G1(x) ln c

or, by setting G̃(x, z) = G(x, z − g(x)),

G̃(x, cv) = G̃(x, v) +G1(x) ln c

a.e. µ(dx)dcdv. Consider now v > 0 and write the above relation as

G̃(x, cv)−G1(x) ln cv = G̃(x, v)−G1(x) ln v

a.e. µ(dx)dcdv. By setting Ĝ(x, z) = G̃(x, z) − G1(x) ln z for x ∈ X, z > 0, we then have Ĝ(x, cv) =
Ĝ(x, v) a.e. µ(dx)dcdv. By making the change of variables c = z/v and then fixing v, we deduce that
Ĝ(x, z) = G2,1(x)1(0,∞)(z) a.e. µ(dx)dz for some G2,1. Going backwards, we get for z + g(x) > 0,

G(x, z) = G̃(x, z + g(x)) = G2,1(x)1(0,∞)(z + g(x)) +G1(x) ln(z + g(x))

a.e. µ(dx)dz. When z + g(x) < 0, one may deduce similarly that, for some function G2,2,

G(x, z) = G2,2(x)1(−∞,0)(z + g(x)) +G1(x) ln |z + g(x)|

= G2,2(x)−G2,2(x)1(0,∞)(z + g(x)) +G1(x) ln |z + g(x)|
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a.e. µ(dx)dz. By combining the previous two relations we get

G(x, z) = (G2,1(x)−G2,2(x))1(0,∞)(z + g(x)) +G1(x) ln |z + g(x)|+G2,2(x) (5.9)

a.e. µ(dx)dz and hence representation (5.2).

Suppose now that κ 6= 0 and the process Xα has representation (5.1) which is also representation
(1.4) with the kernel function G(x, u) = G1(x)u

κ
+ + G2(x)u

κ
−, x ∈ X, u ∈ R. Since c−κG(x, cu) =

G(x, u), we see that condition (2.3) holds with the identity flow ψc(x) = x (and the corresponding
cocycle bc(x) = 1 and the semi-additive functional gc(x) = 0). To conclude that Xα is generated by
an identity flow, one still needs to check condition (2.4). Assume that (2.4) does not hold. Then, by
Lemma 4.2 in Pipiras and Taqqu (2001a), there is a measurable set X0 ⊂ X with µ(X0) > 0 such
that, for all t ∈ R, G(x, t+u)−G(x, u) = 0 a.e. for x ∈ X0 and u ∈ R. Hence, by the Fubini’s theorem
and a change of variables, G(x, v) = G(x, u) a.e. for x ∈ X0 and u, v ∈ R. This condition implies that
G1(x) = 0 and G2(x) = 0 a.e. for x ∈ X0. Since µ(X0) > 0, this contradicts supp{G1, G2} = X. The
case κ = 0 may be proved in a similar way. 2

Remarks

1. The process (5.1) is well-defined for G1, G2 ∈ Lα(X,X , µ), α ∈ (0, 2) and H ∈ (0, 1), since by
using the inequality |a+ b|α ≤ const(|a|α + |b|α),

∫

X

∫

R
|G1(x)

(
(t+ u)κ+ − u

κ
+

)
+G2(x)

(
(t+ u)κ− − u

κ
−
)
|αµ(dx)du <∞, (5.10)

for all t ∈ R. It is not defined for H ≥ 1 since the integral in (5.10) equals +∞. This also means
that the process Xα cannot be generated by an identity flow when H ≥ 1.

2. The process (5.1) is also a mixed fractional motion in the sense of Burnecki et al. (1998), since
for t > 0 it can be represented in distribution as

∫

X

∫ ∞

0
uκG1(x)

(
(u−1t+ 1)κ+ − 1

)
Mα(dx, du)

+

∫

X

∫ 0

−∞
(−u)κ

(
G1(x)((−u)

−1t− 1)κ+ +G2(x)(((−u)
−1t− 1)κ− − 1)

)
Mα(dx, du)

d
=

∫

X̃

∫ ∞

0
zκG̃

(
x̃,
t

z

)
Mα(dx̃, dz),

where X̃ = X × {1, 2}, x̃ = (x, j, z) and G̃(x̃, s) = G̃(x, j, s) = 1{j=1}G1(x)((s + 1)κ+ − 1) +
1{j=2}(G1(x)(s− 1)κ+ +G2(x)((s− 1)κ− − 1)) for x ∈ X, s > 0 and j ∈ {1, 2}.

Example 5.1 By setting X = {1} and µ(dx) = δ{1}(dx) in (5.1), one gets

Xα(t) =

∫

R

(
a
(
(t+ u)κ+ − u

κ
+

)
+ b

(
(t+ u)κ− − u

κ
−
))
Mα(du), t ∈ R, (5.11)

that is, the usual linear fractional stable motions. We refer the reader to Chapter 7 in Samorodnitsky
and Taqqu (1994) for more information about these processes. Note also that, by setting X = {1}
and µ(dx) = δ{1}(dx) in (5.2), one gets

Xα(t) =

∫

R

(
a(ln |t+ u| − ln |u|) + b(1(0,∞)(t+ u)− 1(0,∞)(u))

)
Mα(du), t ∈ R. (5.12)
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When b = 0, the process (5.12) is the so-called log-fractional stable motion introduced by Kasahara,
Maejima and Vervaat (1988). If a = 0, then (5.12) becomes the usual SαS Lévy motion because

Xα(t) = b

∫

R
(1(0,∞)(t+ u)− 1(0,∞)(u))Mα(du)

d
= b

∫

R
1(0,t)(u)Mα(du).

Definition 5.1 We will call processes (5.1) and (5.2) mixed linear fractional stable motions (mixed
LFSM, in short).

We give that name to the processes (5.1) because they are extensions of the linear fractional stable
motions (5.11). We also call the processes (5.2) mixed LFSM because they can be viewed as limiting
cases of mixed LFSM (5.1) when κ→ 0. To see this, observe that

∫

X

∫

R

(
G1(x)

|t+ u|κ − |u|κ

κ
+G2(x)((t+ u)κ+ − u

κ
+)
)
Mα(dx, du)

is a mixed LFSM, and that (|t+ u|κ− |u|κ)/κ→ ln |t+ u| − ln |u| and (t+ u)κ+− u
κ
+ → 1(0,∞)(t+ u)−

1(0,∞)(u) as κ→ 0.
We conclude this section by applying Theorem 5.1 to characterize linear fractional stable motions,

log-fractional stable motion and Lévy motion. This characterization extends Theorem 3 in Cambanis
et al. (1992) because it does not assume the local L1–integrability of the kernel function G and also
includes the case H = 1/α.

Corollary 5.1 Let α ∈ (0, 2) and H ∈ (0, 1). Suppose that a SαS nondegenerate process {Xα(t)}t∈R
with stationary increments, having the representation

{Xα(t)}t∈R
d
=

{∫

R
(G(t+ u)−G(u))Mα(du)

}

t∈R
,

whereMα has the Lebesgue control measure, is self-similar with exponent H. Then, if κ = H−1/α 6= 0,
Xα is a linear fractional stable motion (5.11). If κ = 0, then Xα is the sum of the log-fractional stable
motion and the Lévy stable motion in (5.12).

Proof: Example 4.1 and Theorem 4.1 in Pipiras and Taqqu (2001a) show that the kernel function
G satisfies conditions (2.3) and (2.4). Since X = {1}, the flow can only be an identity flow. The
conclusion then follows from Theorem 5.1. 2

6 The mixed LFSM component set

According to Theorem 5.1, mixed LFSM’s are mixed moving averages Xα characterized by identity
flows. Another way to get a mixed LFSM is through the kernel G of the process Xα directly, without
using flows. This idea is based on the mixed LFSM component set which we introduce and whose
properties we explore in this section. The set will be used in the next section to decompose the
conservative component process XC

α .
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Definition 6.1 Let Xα be a mixed moving average (1.4) with the kernel function G. The mixed
LFSM component set of the process Xα is the set

E :=
{
x ∈ X : ∃ Gi = Gi(x), i = 1, 2, 3, g = g(x) ∈ R such that

G(x, u) = G1(x) ln |u+ g(x)|+G2(x)1(0,∞)(u+ g(x)) +G3(x) a.e. du
}

(6.1)

when κ = 0, and the set

E :=
{
x ∈ X : ∃ Gi = Gi(x), i = 1, 2, 3, g = g(x) ∈ R such that

G(x, u) = G1(x)(u+ g(x))κ+ +G2(x)(u+ g(x))κ− +G3(x) a.e. du
}

(6.2)

when κ 6= 0.

Lemma 6.1 The mixed LFSM component set E is measurable. The functions G1, G2, G3 and g,
when restricted to E are measurable as well. Moreover, if the function G satisfies condition (2.4), then
supp{G1, G2} = E a.e.

Proof: We prove the lemma only in the case κ = 0. The case κ 6= 0 may be proved in a similar way.
The idea is to express this set and the functions Gi, i = 1, 2, 3, and g in terms of the given measurable
function G. Define first the set

X1 = {x ∈ X : G(x, u)(lnu)−1 → G̃1(x) ∈ R a.e. as u→ +∞},

where by h(u)→ h ∈ R a.e. as u→ +∞, we mean that ∀ε > 0 ∃ u0 = u0(ε) such that |h(u)− h| < ε
a.e. for u > u0. We first show that the set X1 is measurable. By the Cauchy’s criterion, X1 is equal
to the set ∩n≥1 ∪m≥1 An,m, where An,m = {x : K(x, u, v) < 1/n a.e. dudv for u, v > m} and

K(x, u, v) = |G(x, u)(lnu)−1 −G(x, v)(ln v)−1|.

Note that the set An,m is measurable since it equals {x : K(x) = 0}, where the function K(x) =∫
R
∫
R 1{K(x,u,v)≥1/n}1{u,v>m}dudv is measurable by the Fubini’s theorem. Therefore, X1 is measurable.

Then, for x ∈ X1, we have
G(x, u+ n)(ln(u+ n))−1 → G̃1(x)

for a.e. u > 0 as n→∞, and, by the Fubini’s theorem, this convergence holds a.e. for (x, u) ∈ X1×R.
Since G̃1 is the limit of measurable functions, it has to be measurable as well. Moreover, we have
E = X1 ∩E(X1, G̃1, G2, G3, g), where the set E(. . .) is defined as in (6.1) but with X and G1 replaced
by X1 and G̃1, respectively, and requiring the existence of G2, G3 and g only. (We shall continue to
use the E(. . .) type notation below.) Now, define the set

X2 = {x ∈ X1 : G(x, u)− G̃1(x) ln |u| → G̃3(x) ∈ R a.e. as u→ −∞}.

Arguing as above, we can deduce that the set X2 is measurable and that the function G̃3, restricted
to X2, is measurable as well. Moreover, E(X1, G̃1, G2, G3, g) = X2 ∩ E(X2, G̃1, G2, G̃3, g), since
ln |u+ g(x)| − ln |u| → 0 and 1(0,∞)(u+ g(x))→ 0 as u→ −∞. Next, define the set

X3 = {x ∈ X2 : G(x, u)− G̃1(x) ln |u| − G̃3(x)→ G̃2(x) ∈ R a.e. as u→ +∞}.
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Again, the set X3 is measurable, the function G̃2, when restricted to X2, is measurable as well, and
E(X2, G̃1, G2, G̃3, g) = X3 ∩ E(X3, G̃1, G̃2, G̃3, g). Finally, defining the set

X4 =
{
x ∈ X3 : exp

{
(G(x, u)− G̃3(x))(G̃1(x))

−11{G̃1(x)6=0}

}
+ u→ g̃(x) ∈ R a.e. as u→ −∞

}
,

we have the measurability of g̃ and X4, and E(X3, G̃1, G̃2, G̃3, g) = X4 ∩E(X4, G̃1, G̃2, G̃3, g̃). Hence,
since

E = X1 ∩X2 ∩X3 ∩X4 ∩ E(X4, G̃1, G̃2, G̃3, g̃),

where each set in the intersection is measurable, we get that E is measurable as well. It is also clear
that Gi = G̃i|E , i = 1, 2, 3, and g = g̃|E , which implies the measurability of the functions.

If supp{G1, G2} 6= E a.e., then there is a setX0 with µ(X0) > 0 such that G1(x) = 0 and G2(x) = 0
for x ∈ X0. Hence, for any t ∈ R, G(x, t+ u)−G(x, u) = 0 for x ∈ X0 and u ∈ R. Since µ(X0) > 0,
this contradicts (2.4). 2

The following lemma shows that the mixed LFSM component set E is a subset of the conservative
part of the flow {ψc}c>0.

Proposition 6.1 Suppose that the mixed moving average Xα is generated by a flow in the sense of
Definition 2.1. Then the mixed LFSM component set E is a subset (a.e.) of the conservative part
of the flow {ψc}c>0. Moreover, the set E is invariant under the flow a.e. dµ, that is, for any c > 0,
µ(E4ψ−1c (E)) = 0.

Proof: We prove the proposition only for the case κ 6= 0. The case κ = 0 may be proved in a
similar way. By (2.3) and relation (5.11) in Pipiras and Taqqu (2001a), the conservative part of the
flow {ψc}c>0 is C = {x ∈ X : I(x) =∞} a.e. µ(dx), where

I(x) =

∫ ∞

0

∫

R
|G(ψc(x), 1 + u)−G(ψc(x), u)|

αdu
d(µ ◦ ψc)

dµ
(x) c−1dc

=

∫ ∞

0

∫

R
|G(x, c(1 + u))−G(x, cu)|αdu c−Hαdc.

The inclusion E ⊂ C a.e. then follows from (6.2), since, for a.e. x ∈ E,

I(x) =

∫ ∞

0
c−1 dc

∫

R
|G1(x)

(
(1 + u)κ+ − u

κ
+

)
+G2(x)

(
(1 + u)κ− − u

κ
−
)
|αdu =∞.

Let us now show that µ(E4ψ−1c (E)) = 0 for all c > 0. Fix c > 0 and consider x ∈ E. By using
(2.8) and (6.2), we get for a.e. µ(dx),

G(ψc(x), u) = (bc(x))
−1
{
d(µ ◦ ψc)

dµ

}1/α (
c−κG(x, c(u− gc(x)))− J(x, c)

)

= G1,c(x)(u+ g1,c(x))
κ
+ +G2,c(x)(u+ g1,c(x))

κ
− +G3,c(x)

a.e. du, where G1,c, G2,c, G3,c and g1,c are some functions. This shows that ψc(x) ∈ E for a.e. x ∈ E or
that E ⊂ ψ−1c (E) a.e. Since ψ−1c (E) = ψ1/c(E) and we have that E ⊂ ψ−1c (E) a.e. implies ψ1/c(E) ⊂ E
a.e., we get ψ−1c (E) ⊂ E a.e. and hence ψ−1c (E) = E a.e. 2

18



7 Identification of the mixed LFSM component

We suppose throughout this section that α ∈ (1, 2). Our goal is to show that the conservative part

process XC
α in (1.7) can be further decomposed uniquely into two independent processes X

(2)
α and

X
(3)
α . The process X

(2)
α is a mixed LFSM of Definition 5.1, whereas the process X

(3)
α has no mixed

LFSM component, that is, it cannot be decomposed into two independent processes one of which
is a mixed LFSM. To obtain our decomposition, we will use the mixed LFSM component set E in
Definition 6.1. Another approach, namely that based on the structure of the underlying flow, can be
found in Section 10 below.

Let now Xα be a SαS self-similar process having representation (1.4) with the kernel function
G. By Theorem 5.1 in Pipiras and Taqqu (2001a), we may assume without loss of generality that
G satisfies the conditions of Definition 2.1 and hence that Xα is generated by a multiplicative flow
{ψc}c>0 in the sense of that definition. Recall from Pipiras and Taqqu (2001a) that the processes XD

α

and XC
α in the decomposition (1.7) are then defined as

XD
α (t) =

∫

D

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du),

XC
α (t) =

∫

C

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du),

where X = D∪C is the Hopf’s decomposition of the flow {ψc}c>0 into its dissipative and conservative
parts, respectively. Since the mixed LFSM component set E is a subset of the conservative part C by
Proposition 6.1, one can decompose the process XC

α into two processes as

XC
α

d
= X(2)

α +X(3)
α , (7.1)

where

X(2)
α (t) =

∫

E

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du), (7.2)

X(3)
α (t) =

∫

C\E

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du). (7.3)

We will say that the decomposition (7.1) is unique, if it does not depend on the representation (1.4)
of Xα.

Proposition 7.1 The decomposition (7.1) is unique.

Proof: We consider only the case κ 6= 0. By Theorems 4.2 and 4.1 in Pipiras and Taqqu (2001a),
there is a new space X̃ and function G̃(x̃, u), x̃ ∈ X̃, u ∈ R, such that {G̃(x̃, t + u) − G̃(x̃, u)}t∈R ∈
Lα(X̃×R, µ̃(dx̃)du), which also satisfies the conditions (2.3) and (2.4) in Definition 2.1. This function
G̃ corresponds to the so-called minimal spectral representation of the process Xα. (For more details,
see Pipiras and Taqqu (2001a).) Let {ψ̃c}c>0 be the flow associated to G̃ by Definition 2.1, C̃ be the
conservative part of the flow {ψ̃c}c>0, and Ẽ be the set and G̃i, i = 1, 2, 3, g̃ be the functions defined
for G̃ by Definition 6.1. Since G̃ corresponds to a minimal spectral representation of the process
Xα, by Corollary 5.1 in Pipiras and Taqqu (2001a), there are measurable functions Φ1 : X 7→ X̃,
h : X 7→ R \ {0} and Φ2,Φ3 : X 7→ R such that

G(x, u) = h(x)G̃(Φ1(x), u+Φ2(x)) + Φ3(x) (7.4)
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a.e. µ(dx)du and µ̃ = µh ◦Φ
−1
1 , where µh(dx) = |h(x)|

αµ(dx). We want to show first that Φ−11 (Ẽ) = E
and that Φ−11 (C̃ \ Ẽ) = C \ E a.e. µ(dx). If x ∈ E, then a.e. µ(dx),

G1(x)(u+ g(x))κ+ +G2(x)(u+ g(x))κ− +G3(x) = h(x)G̃(Φ1(x), u+Φ2(x)) + Φ3(x)

or

G̃(Φ1(x), u) =
G1(x)

h(x)
(u− Φ2(x) + g(x))κ+ +

G2(x)

h(x)
(u− Φ2(x) + g(x))κ− +

G3(x)− Φ3(x)

h(x)

a.e. du, which shows that Φ1(x) ∈ Ẽ and hence E ⊂ Φ−11 (Ẽ) a.e. µ(dx). Conversely, if Φ1(x) ∈ Ẽ,
then a.e. µ(dx),

G(x, u) = h(x)
(
G̃1(x)(u+Φ2(x) + g̃(x))κ+ + G̃2(x)(u+Φ2(x) + g̃(x))κ− + G̃3(x)

)
+Φ3(x)

a.e. du, which, by performing multiplications on the right-hand side, implies x ∈ E and hence
Φ−11 (Ẽ) ⊂ E a.e. µ(dx). Therefore, Φ−11 (Ẽ) = E a.e. µ(dx). Relation (5.17) in the proof of The-
orem 5.3 in Pipiras and Taqqu (2001a) shows that Φ−11 (C̃0) = C0 a.e. µ(dx), where C0 = C a.e.
µ(dx) and C̃0 = C̃ a.e. µ̃(dx̃), and hence Φ−11 (C̃) = C a.e. µ(dx), since by using µ̃ = µh ◦ Φ

−1
1 ,

µ̃(Ñ) = 0 for Ñ ∈ X̃ implies µ(Φ−1(Ñ)) = 0. Together with Φ−11 (Ẽ) = E a.e. µ(dx), this implies that
Φ−11 (C̃ \ Ẽ) = C \ E a.e. µ(dx).

Let now X̃
(2)
α and X̃

(3)
α be the processes in the decomposition (7.1) obtained from replacing G,

E, C by G̃, Ẽ, C̃ in (7.2) and (7.3), respectively. Then, for every a1, · · · , an ∈ R and t1, · · · , tn ∈ R,
n ≥ 1, we have, by (7.4),

− lnE exp{i
n∑

k=1

akX
(2)
α (tk)} =

∫

E

∫

R

∣∣∣∣∣

n∑

k=1

ak(G(x, tk + u)−G(x, u))

∣∣∣∣∣

α

µ(dx)du

=

∫

E

∫

R

∣∣∣∣∣

n∑

k=1

ak(G̃(Φ1(x), tk + u+Φ2(x))− G̃(Φ1(x), u+Φ2(x)))

∣∣∣∣∣

α

|h(x)|αµ(dx)du

=

∫

Φ−1
1
(Ẽ)

∫

R

∣∣∣∣∣

n∑

k=1

ak(G̃(Φ1(x), tk + u)− G̃(Φ1(x), u))

∣∣∣∣∣

α

µh(dx)du

=

∫

Ẽ

∫

R

∣∣∣∣∣

n∑

k=1

ak(G̃(x̃, tk + u)− G̃(x̃, u))

∣∣∣∣∣

α

µ̃(dx̃)du = − lnE exp{i
n∑

k=1

akX̃
(2)
α (tk)},

which shows that X
(2)
α =d X̃

(2)
α . Similarly, X

(3)
α =d X̃

(3)
α and hence decomposition (7.1) is unique. 2

We will say that a process does not have a mixed LFSM component, if it cannot be decomposed into
two independent SαS processes one of which is a mixed LFSM. We will also say that two processes X
and X̃ are essentially different if there is no multiplicative constant c such that X(t) and cX̃(t) have
the same finite-dimensional distributions.

Proposition 7.2 The process X
(2)
α in (7.2) is a mixed LFSM, while the process X

(3)
α in (7.3) is a

self-similar process with stationary increments, generated by a conservative flow, which does not have
a mixed LFSM component. These processes are independent and essentially different.
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Proof: The processes X
(2)
α and X

(3)
α are independent because their kernels have disjoint supports,

that is, E ∩ (C \E) = ∅ (see Theorem 3.5.3 in Samorodnitsky and Taqqu (1994)). The process X
(2)
α is

a mixed LFSM by construction. The process X
(3)
α has representation (1.4) and hence has stationary

increments. It is also self-similar. Indeed, XC
α =d X

(2)
α +X

(3)
α , X

(2)
α and X

(3)
α are independent and XC

α

and X
(2)
α are self-similar. Therefore, X

(3)
α is self-similar because its characteristic function is the ratio

of the characteristic functions of two self-similar processes. Let us show now that X
(3)
α has no mixed

LFSM component when κ 6= 0. Suppose there exist two independent SαS processes Yα and Zα such
that

X(3)
α

d
= Yα + Zα, (7.5)

where Yα is a mixed LFSM, defined by (5.1) with some functions Ĝ1, Ĝ2 ⊂ Lα(Y, µ̂(dy)) and
supp{Ĝ1, Ĝ2} = Y . The structure of the process Zα plays no role in the proof. Observe only that,

by (7.5), Zα has a stochastic integral representation. Indeed, since SαS processes Yα + Zα(=d X
(3)
α )

and −Yα have stochastic integral representations, these processes are necessarily separable in prob-
ability and hence so is their sum Zα (see Theorem 13.2.1 and Exercise 3.20 in Samorodnitsky and
Taqqu (1994)). Then, by the same Theorem 13.2.1, we have Zα(t) =d

∫ 1
0 gt(z)Mα(dz) for some

{gt}t∈R ⊂ Lα(0, 1), where Mα has the Lebesgue control measure dz. Since Yα and Zα are indepen-
dent, one can represent the sum Yα+Zα as

∫
V ft(v)Mα(dv), where V is made up of two disjoint parts

Y × R and (0, 1). Formally, V = (Y × R) ∪ (0, 1) = {v : v = (y, u) ∈ Y × R or v = z ∈ (0, 1)},
ft(v) = gt(z), if v = z, and ft(v) = Ĝ1(y)((t+u)

κ
+−u

κ
+)+ Ĝ2(y)((t+u)

κ
−−u

κ
−), if v = (y, u), and Mα

has the control measure m(dv) equal to dz on (0, 1) and µ̂(dy)du on Y ×R. We may suppose without
loss of generality that supp{ft, t ∈ R} = V . Then, one can relate the representations of Yα + Zα and

X
(3)
α in (7.5): by Theorem 1.1 in Rosiński (1995), there are functions Φ1 : V 7→ C \ E, Φ2 : V 7→ R

and h : V 7→ R \ {0} such that

ft(v) = h(v) (G(Φ1(v), t+Φ2(v))−G(Φ1(v),Φ2(v)))

a.e. m(dv)dt. Considering only those v = (y, u) ∈ Y × R, we have

Ĝ1(y)((t+u)
κ
+−u

κ
+)+Ĝ2(y)((t+u)

κ
−−u

κ
−) = h(y, u) (G(Φ1(y, u), t+Φ2(y, u))−G(Φ1(y, u),Φ2(y, u)))

a.e. µ̂(dy)dudt. Then fixing u = u0 for which the relation holds a.e. µ̂(dy)dt and making the change of
variables t+u0 = w, we get that there are new measurable functions Φ1 : Y 7→ C \E, Φ2,Φ3 : Y 7→ R
and h : Y 7→ R \ {0} such that

Ĝ1(y)w
κ
+ + Ĝ1(y)w

κ
− = h(y)G(Φ1(y), w +Φ2(y)) + Φ3(y) (7.6)

a.e. µ̂(dy)dw. Hence, Φ1(y) ∈ E a.e. µ̂(dy). If µ̂ is not a zero measure, then relation (7.6) contradicts
the fact that Φ1(y) ∈ C \ E. The case of κ = 0 may be proved in a similar way.

Finally, there is no constant c 6= 0 such that cX
(2)
α =d X

(3)
α (in other words, the processes are

essentially different), since X
(3)
α has no mixed LFSM component. 2

8 Example of a process of the “third kind”

In this section, we provide an example of a mixed moving average process generated by a conservative

flow which has only process X
(3)
α in its decomposition (7.1). (We refer to such processes as processes

of the “third kind”.) Existence of such a process turned out to be a nontrivial problem.
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Consider a mixed moving average Xα in (1.4) with X = [0, 1), µ(dx) = dx and

G(x, u) = uκ+1[0,1/2)({x+ ln |u|}), x ∈ [0, 1), u ∈ R, (8.1)

where κ = H − 1/α < 0, H ∈ (0, 1), α ∈ (0, 2) and {·} denotes the fractional part function. By using
Lemma 8.1 below, the process Xα is well-defined for κ < 0 and thus it can be represented as

Xα(t) =

∫ 1

0

∫

R

(
(t+ u)κ+1[0,1/2)({x+ ln |t+ u|})− uκ+1[0,1/2)({x+ ln |u|})

)
Mα(dx, du), (8.2)

where SαS random measureMα has the Lebesgue control measure on [0, 1)×R. By using the identity

{x+ s+ t} = {{x+ s}+ t}, x ∈ [0, 1), s, t ∈ R, (8.3)

we obtain from (8.1) that, for all c > 0 and x ∈ [0, 1),

c−κG(x, cu) = uκ+1[0,1/2)({{x+ ln c}+ ln |u|}) = G(ψc(x), u), (8.4)

where ψc(x) = {x+ ln c}.
The identity (8.3) also shows that {ψc}c>0 is a multiplicative flow on [0, 1). We will call the

multiplicative flow {ψc}c>0 a cycle because its additive counterpart, the flow φt(x) = ψet(x) = {x+ t},
t ∈ R, is isomorphic to a cycle φ̃t(z) = ei2πtz, t ∈ R, on the unit circle |z| = 1. Observe that a cycle is
clearly conservative since the flow is measure preserving and given a set A ⊂ [0, 1) with µ(A) > 0, the
iterations of A under the flow cannot be disjoint since they are in [0, 1) and µ[0, 1) = 1 <∞. Relation
(8.4) and Definition 2.1 now imply that the process (8.2) is generated by a conservative flow, namely a
cycle {ψc}c>0, and by the corresponding cocycle bc(x) ≡ 0 and the semi-additive functional gc(x) ≡ 0.
Since the mixed LFSM component set E for the kernel function (8.1) is empty, the process (8.2) is

indeed a process of the “third kind”, that is, it is of the type X
(3)
α .

In the next lemma, we prove that the process (8.2) is well-defined for κ < 0.

Lemma 8.1 Let α ∈ (0, 2), H ∈ (0, 1) and κ = H − 1/α < 0. Set Gt(x, u) = G(x, t+u)−G(x, u) for
x ∈ [0, 1) and u, t ∈ R, where the function G is defined by (8.1). Then Gt ∈ Lα([0, 1) × R) for each
t ∈ R.

Proof: Since {Gt}t∈R is the kernel of a self-similar process Xα, it is enough to prove that G1 ∈
Lα([0, 1)× R), that is,

∫ 1

0

∫

R

∣∣∣(1 + u)κ+1[0,1/2)({x+ ln |1 + u|})− uκ+1[0,1/2)({x+ ln |u|})
∣∣∣
α
dxdu <∞

or, with B =
⋃
k∈Z[k, k + 1/2),

∫ 1

0

∫

R

∣∣∣(1 + u)κ+1{(x+ln |1+u|)∈B} − u
κ
+1{(x+ln |u|)∈B}

∣∣∣
α
dxdu <∞.

It is also enough to verify that

J =

∫ 1

0

∫ ∞

13

∣∣∣(1 + u)κ1{(x+ln(1+u))∈B} − u
κ1{(x+lnu)∈B}

∣∣∣
α
dxdu <∞
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(the lower limit is 13 for good luck), since κα + 1 = Hα > 0 and, for example,
∫ 13
−1 |1 + u|καdu < ∞.

Observe now that, for u > 0,

1{(x+ln(1+u))∈B} = 1{u∈∪k∈Z[ek−x−1,ek−x+1/2−1)} and 1{(x+lnu)∈B} = 1{u∈∪k∈Z[ek−x,ek−x+1/2)}.

Suppose k ≥ 3 and x ∈ [0, 1). Since ek−x < ek−x+1/2 − 1, we have ek−x − 1 ≤ ek−x ≤ ek−x+1/2 − 1 ≤
ek−x+1/2. Moreover, since e(k−1)−x+1/2 < ek−x − 1, the intervals (ek−x − 1, ek−x+1/2] do not overlap.
Then, since e(k−1)−x+1/2 < 13 for k ≤ 3 and all x ∈ [0, 1), we obtain that

J =

∫ 1

0

∫ ∞

13

∣∣∣∣∣∣

∞∑

k=−∞
(1 + u)κ1{u∈∪k∈Z[ek−x−1,ek−x+1/2−1)} − u

κ1{u∈∪k∈Z[ek−x,ek−x+1/2)}

∣∣∣∣∣∣

α

dxdu

≤
∫ 1

0

∫ ∞

0

∣∣∣∣∣

∞∑

k=3

(1 + u)κ1{u∈∪k∈Z[ek−x−1,ek−x+1/2−1)} − u
κ1{u∈∪k∈Z[ek−x,ek−x+1/2)}

∣∣∣∣∣

α

dxdu

≤
∫ 1

0

∫ ∞

0

∣∣∣∣∣

∞∑

k=3

(1 + u)κ1{u∈[ek−x−1,ek−x)} + ((1 + u)κ − uκ)1{u∈[ek−x,ek−x+1/2−1)}

+uκ1{u∈[ek−x+1/2−1,ek−x+1/2)}

∣∣∣
α
dxdu

≤ 3α
∫ 1

0

∫ ∞

0

∣∣∣∣∣

∞∑

k=3

(1 + u)κ1{u∈[ek−x−1,ek−x)}

∣∣∣∣∣

α

dxdu+ 3α
∫ 1

0

∫ ∞

0
|(1 + u)κ − uκ|αdxdu

+3α
∫ 1

0

∫ ∞

0

∣∣∣∣∣

∞∑

k=3

uκ1{u∈[ek−x+1/2−1,ek−x+1/2)}

∣∣∣∣∣

α

dxdu

≤ 3α
∫ 1

0

∞∑

k=3

e(k−x)καdx+ 3α
∫ ∞

0
|(1 + u)κ − uκ|αdu+ 3α

∫ 1

0

∞∑

k=3

(ek−x+1/2 − 1)καdx <∞,

since |a+ b+ c|α ≤ 3αmax{|a|α, |b|α, |c|α} ≤ 3α(|a|α + |b|α + |c|α), κ < 0,
∫∞
0 |(1 + u)κ − uκ|αdu <∞

for α ∈ (0, 2) and H ∈ (0, 1), and
∑∞

k=3 e
kκα =

∑∞
k=3 e

−k|κ|α <∞ for κ < 0. 2

9 Decomposition of the process in three components

The following theorem summarizes the preceding results.

Theorem 9.1 Let α ∈ (1, 2), H ∈ (0, 1) and κ = H − 1/α. Suppose that the process Xα has
representation (1.4) (and hence has stationary increments) and is self-similar with exponent H. Then,
it can be uniquely decomposed in distribution into three independent processes

Xα
d
= X(1)

α +X(2)
α +X(3)

α . (9.1)

The process X
(1)
α has the canonical representation (4.1) and is generated by a dissipative multiplicative

flow in the sense of Definition 2.1. The process X
(2)
α , called a mixed linear fractional stable motion,

is generated by a conservative flow in the sense of Definition 2.1 and has the representation (5.1), if

κ 6= 0, and (5.2), if κ = 0. The process X
(3)
α is also generated by a conservative flow in the sense of

Definition 2.1, but has no mixed linear fractional stable motion component.
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We obtained the decomposition (9.1), by assuming, without loss of generality, that the self-similar
stationary increments mixed moving average Xα is generated by a flow {ψc}c>0 associated with a
kernel G as in Definition 2.1. An alternative way to obtain (9.1) is as follows. Suppose that Xα

is an H–self-similar process having the representation (1.4) and that condition (2.4) holds (without
assuming (2.3)). Setting

I(x) =

∫ ∞

0
c−Hα

∫

R
|G(x, c(1 + u))−G(x, cu)|αdudc (9.2)

for x ∈ X, define the sets

D = {x : I(x) <∞} and C = {x : I(x) =∞}. (9.3)

Even though the sets D and C are not associated with a flow, one can obtain a decomposition of the
type (9.1), by defining first the processes

XD
α (t) =

∫

D

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du) (9.4)

and

XC
α (t) =

∫

C

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du), (9.5)

and then decomposing XC
α further into two independent processes

XE
α (t) =

∫

E

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du) (9.6)

and

XC\E
α (t) =

∫

C\E

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du), (9.7)

where E is the set defined in Definition 6.1. The proof of Proposition 6.1 shows that E is indeed a
subset of C a.e. µ(dx) (where C is now defined by (9.3)). The following result states that the processes

XD
α , XE

α and X
C\E
α are equal in distribution to the three components in the decomposition (9.1).

Corollary 9.1 Let α ∈ (1, 2) and H ∈ (0, 1). Suppose that the H–self-similar process Xα has rep-

resentation (1.4) with supp {G(x, t+ u)−G(x, u), t ∈ R} = X × R. Let XD
α , XE

α and X
C\E
α be the

processes defined in (9.4), (9.6) and (9.7) by using the sets D, C and E in (9.3) and Definition 6.1,
respectively. Then

XD
α

d
= X(1)

α , XE
α

d
= X(2)

α , XC\E
α

d
= X(3)

α , (9.8)

where the processes X
(1)
α , X

(2)
α and X

(3)
α are the three components in the decomposition (9.1).

Proof: By Corollary 5.3 in Pipiras and Taqqu (2001a), the processes XD
α and XC

α defined by (9.4)
and (9.5) are (in distribution) the dissipative and conservative components in the decomposition (1.7)

of Xα. In particular, XD
α =d X

(1)
α , where X

(1)
α is the first process in the decomposition (9.1). As in

the proof of Proposition 7.1 (see also relation (5.25) in Pipiras and Taqqu (2001a)), one can show that

XE
α =d X̃

(2)
α and X

C\E
α =d X̃

(3)
α , where the processes X̃

(2)
α and X̃

(3)
α are defined in the proof of that

proposition. Since, by the same proposition, the decomposition (7.1) is unique, we obtain XE
α =d X

(2)
α

and X
C\E
α =d X

(3)
α , where X

(2)
α and X

(3)
α are the last two processes in the decomposition (9.1). 2

Corollary 9.1 is useful because it provides a simple expression for D and C which only involves the
representation (1.4) of the process.
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10 Connection between decomposition and flows

Let α ∈ (1, 2) and Xα be a self-similar mixed moving average (1.4) with the kernel function G. As in
Section 7, we may suppose without loss of generality that Xα is generated by a flow {ψc}c>0 associated
with the kernel G as in Definition 2.1. Recall from Pipiras and Taqqu (2001a) that Xα can be uniquely
decomposed as Xα =d X

D
α +XC

α , where X
D
α is generated by a dissipative component {ψDc }c>0 of the

flow {ψc}c>0 and X
C
α is generated by a conservative component {ψCc }c>0 of the flow {ψc}c>0. We saw

in Section 7 that one can decompose XC
α further in a unique way as XC

α =d X
(2)
α +X

(3)
α , where X

(2)
α

is a mixed LFSM and X
(3)
α does not have a mixed LFSM component. Unlike the decomposition of Xα

into the dissipative part XD
α and the conservative part XC

α , the decomposition of XC
α into a mixed

LFSM X
(2)
α and a “third kind” process X

(3)
α is not related directly to the flow but to the kernel G

itself (through the set E in Definition 6.1). The question then is when and how the processes X
(2)
α

and X
(3)
α can be associated with the underlying flow {ψc}c>0.

A natural candidate for this connection is the set of the “fixed points” of the flow {ψc}c>0, namely,

F = {x ∈ X : ψc(x) = x for all c > 0}, (10.1)

which is a subset of a conservative part C of the flow. Since, by Theorem 5.1, the process

XF
α (t) =

∫

F

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du) (10.2)

has a mixed LFSM representation, one may expect that XF
α =d X

(2)
α and, similarly, X

C\F
α =d X

(3)
α ,

where

XC\F
α (t) =

∫

C\F

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du). (10.3)

This is, however, incorrect in general. For example, the mixed LFSM

Xα(t) =

∫ 1

0

∫

R

(
(t+ u)κ+ − u

κ
+

)
Mα(dx, du), (10.4)

whereMα has the Lebesgue control measure on [0, 1)×R, can be generated by a cycle ψc(x) = {x+ln c},
x ∈ [0, 1), c > 0 (see Section 8, where the notion of a cycle is introduced) and hence F = ∅ and

C \ F = [0, 1). Therefore, in this case, XF
α ≡ 0 and X

C\F
α = Xα while, by (7.2) and (7.3), X

(2)
α = Xα

and X
(3)
α ≡ 0 and hence X

(2)
α 6=d X

F
α .

We will show here, however, that, if the representation (1.4) is minimal for the process Xα, then

X
(2)
α is indeed the process XF

α in (10.2) and, similarly, X
(3)
α =d X

C\F
α . Minimal representations are

defined and discussed at length in Pipiras and Taqqu (2001a). They are natural in our context because
they rule out “redundancies”, as in the representation (10.4). (Note that the variable x in (10.4) is not
doing much.) From another perspective, we may say that, when one considers minimal representations,

the process X
(2)
α in (7.2) is generated by the identity flow only. The following two results make this

precise.

Theorem 10.1 Let α ∈ (1, 2). If the representation (1.4) is minimal for a self-similar process Xα and
a flow {ψc}c>0 is associated with this representation as in Definition 2.1, then the set E in Definition
6.1 satisfies

E = {x ∈ X : ψc(x) = x for all c > 0} a.e. dµ. (10.5)

Hence the corresponding process X
(2)
α is generated by the identity flow only.

25



Proof: We shall give the proof for κ 6= 0. The case κ = 0 is proved in a similar way. In view of
Proposition 6.1, the set E is invariant under the flow a.e. dµ. By Lemma 2.3 in Krengel (1969), there
is a set E∗ such that E = E∗ a.e. µ(dx) and E∗ is {ψc}-invariant, that is, ψc(E

∗) = E∗ for all c > 0.

Since E = E∗ a.e. µ(dx), replacing E by E∗ in the representation (7.2) of X
(2)
α does not change the

distribution of the process, that is,

{X(2)
α (t)}t∈R

d
=

{∫

E∗

∫

R
(G(x, t+ u)−G(x, u))Mα(dx, du)

}

t∈R
.

Since E∗ is a {ψc}-invariant set, the collection of maps {ψ∗c}c>0 = {ψc|E∗}c>0 is a flow on E∗, and
{b∗c}c>0 = {bc|E∗}c>0 and {g∗c}c>0 = {gc|E∗}c>0 are a cocycle and a semi-additive functional for the
flow {ψ∗c}c>0. Then, in view of Definition 2.1, we have for c > 0,

c−κ (G(x, c(t+ u))−G(x, cu))

= b∗c(x)
{
d(µ ◦ ψ∗c )

dµ
(x)

}1/α
(G(ψ∗c (x), t+ u+ g∗c (x))−G(ψ

∗
c (x), u+ g∗c (x))) (10.6)

a.e. for (x, u) ∈ E∗ × R, and hence the process X
(2)
α is generated by the flow {ψ∗c}c>0. On the other

hand, observe that, by using (6.2) and E = E∗ a.e., we have for c > 0,

c−κ (G(x, c(t+ u))−G(x, cu)) = G1(x)c
−κ((c(t+ u) + g(x))κ+ − (cu+ g(x))κ+)

+G2(x)c
−κ((c(t+ u) + g(x))κ− − (cu+ g(x))κ−) = G(x, t+ u+ gc(x))−G(x, u+ gc(x)) (10.7)

a.e. (x, u) ∈ E∗ × R, where gc(x) = (c−1 − 1)g(x). Therefore, the process X
(2)
α is also generated by

an identity flow on E∗ and a related semi-additive functional {gc}c>0. Now, if the representation
{G(x, t + u) − G(x, u), x ∈ X,u ∈ R}t∈R is minimal for the process Xα, then this representation

restricted to E∗×R is also minimal for the process X
(2)
α . This fact is a consequence of the definition of

a minimal representation (see Pipiras and Taqqu (2001a)) or can also be obtained by using Theorem
3.8 in Rosiński (1998). It follows by using the uniqueness of the flow in Theorem 4.1 of Pipiras and
Taqqu (2001a) and also the relations (10.6) and (10.7) that for all c > 0, ψ∗c (x) = x a.e. for x ∈ E∗.
We then deduce that ψc(x) = x a.e. for (x, c) ∈ E × (0,∞). Then, for a.e. x ∈ E, ψc(x) = x a.e. dc.
By using the flow property (2.5), we get that, for a.e. x ∈ E, ψc(x) = x for all c > 0. This shows
that E ⊂ F a.e., where F denotes the set on the right-hand side of (10.5). The inclusion F ⊂ E a.e.
follows as in the proof of Theorem 5.1 by showing that the relation (5.3), valid for a.e. (x, u) ∈ F ×R,
implies the relation (5.7), valid for a.e. (x, z) ∈ F × R. 2

The following result follows directly from Theorem 10.1.

Corollary 10.1 Under the assumptions of Theorem 10.1, we have

X(2)
α

d
= XF

α , X(3)
α

d
= XC\F

α , (10.8)

where the processes X
(2)
α and X

(3)
α are defined by (7.2) and (7.3), respectively, and the processes XF

α

and X
C\F
α are defined by (10.2) and (10.3), respectively.
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A Almost everywhere version of the Cauchy functional equation

Recall that a function k : R 7→ R satisfies the Cauchy functional equation if k(s+ t) = k(s) + k(t) for
all s, t ∈ R. It is well-known (see, for example, Section 1.1.3 in Bingham, Goldie and Teugels (1987))
that the only measurable solutions to the Cauchy functional equation are of the form k(s) = k(1)s.
We shall say that a function k satisfies the Cauchy functional equation a.e. if the above equation holds
a.e. (s, t). The following proposition, used in the proof of Theorem 5.1 above, concerns functions that
satisfy the Cauchy functional equation a.e. It may be useful in other contexts as well.

Proposition A.1 Suppose that k : R 7→ R is a measurable function such that
(i) k(s+ t) = k(s) + k(t) a.e. dsdt,
(ii) a.e. ds, k(s+ r) = k(s) + k(r) for each r ∈ Q,
(iii) a.e. ds, k(rs) = rk(s) for each r ∈ Q, and
(iv) k(r) = rk(1) for each r ∈ Q.

Then k(s) = k(1)s a.e. ds.

The proof of the proposition is based on the following lemma which is an a.e. analogue of Lemma
1.1.6 in Bingham et al. (1987).

Lemma A.1 If a measurable function k satisfies the condition (i) of Proposition A.1, then k is
bounded a.e. on some neighborhood of the origin.

Proof: The basic idea is to arrive at relation (A.1) below where s is around the origin and where
t0, a and a′ are the points where the function k is bounded. By taking M large enough, we may
suppose that k(t) ≤M <∞ for t ∈ A with a set A of positive Lebesgue measure. By Corollary 1.1.3
of Bingham et al. (1987), A + A = {a + a′ : a ∈ A, a′ ∈ A} contains some interval (t − δ, t + δ) with
δ > 0. Choose now t0 ∈ (t− δ, t+ δ) such that k(s+ t0) = k(s) + k(t0) a.e. ds and choose also δ0 > 0
such that (t0 − δ0, t0 + δ0) ⊂ (t − δ, t + δ). The set Z = {(a, a′, s) : a + a′ = s + t0, a, a

′ ∈ A} and
its projsZ = {s : ∃ a, a′ such that (a, a′, s) ∈ Z} are measurable, and (−δ0, δ0) ⊂ projsZ, that is, we
can choose s ∈ projsZ around the origin. Now let Z0 = {(a, a′, s) : k(a + a′) = k(a) + k(a′), s ∈ R}.
By (i), Z0 = R3 a.e. dada′ds. Then Z ∩ Z0 = Z a.e., projs(Z ∩ Z0) = projsZ a.e. ds and (−δ0, δ0) ⊂
projs(Z ∩ Z0) a.e. ds. It follows that, for a.e. |s| < δ0, namely such that s ∈ projs(Z ∩ Z0) and
k(s+ t0) = k(s) + k(t0),

k(s) + k(t0) = k(s+ t0) = k(a+ a′) = k(a) + k(a′) (A.1)

and hence k(s) = k(a) + k(a′) − k(t0) ≤ 2M − k(t0). The bound from below will follow by similar
arguments since, by (i), k(s) = −k(s0 − s) + k(s0) a.e. ds for some fixed s0 ∈ R. 2

We now give the proof of Proposition A.1.

Proof: By Lemma A.1, there are M, δ > 0 with |k(s)| ≤ M a.e. for |s| < δ. Suppose without loss
of generality that δ = 1. Then, by condition (iii), |k(s)| ≤ M/n a.e. for 0 < s < 1/n. It follows that
|k(s− [sn]/n)| ≤M/n a.e. ds for s ∈ R. By condition (ii), k(s− [sn]/n) = k(s)− k([sn]/n) a.e. ds for
s ∈ R. Then, by (iv), for a.e. s ∈ R,

|k(s)− sk(1)| = |k(s− [sn]/n) + ([sn]/n− s)k(1)| ≤ (M + |k(1)|)/n.
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Letting n→∞, we obtain k(s) = k(1)s a.e. ds. 2
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