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Abstract

We give necessary and sufficient conditions for the stationary density of semimartingale reflected

Brownian motion in a wedge to be written as a finite sum of terms of exponential product form.

Relying on geometric ideas reminiscent of the reflection principle, we give an explicit formula for

the density in such cases.

1 Introduction

It is well-known that Brownian motion on the positive half-line with negative drift and reflection

at zero has a stationary density which is exponential. One derivation of this fact uses time reversal

to relate the distribution of the corresponding transitory process at time t in the driftless case to

the distribution of the maximum of a standard Brownian motion over [0, t], which can be found

using the reflection principle. A Cameron-Martin-Girsanov change of measure then introduces the

drift, and letting t →∞ gives the required stationary distribution. In the d-dimensional setting,

analogous arguments show that in certain situations, semimartingale reflected Brownian motion

(SRBM) in a polyhedral cone has a stationary density which can be written as a finite sum of terms

of exponential product form—that is, terms of the form x 7→ ae−〈λ,x〉 for some a ∈ R,λ ∈ Rd . We

call such a density a sum of exponentials. The aim of this paper is to give necessary and sufficient

conditions under which the stationary density of SRBM in a two-dimensional wedge can be written

as a sum of exponentials.
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Reflected Brownian motion in a wedge 1

In order to motivate our study, we describe the above argument in a multidimensional setting in

Section 2 below. The invariant measure for SRBM with special pushing directions at the boundary

of a polyhedral cone then relates to exit probabilities for the corresponding free Brownian motion.

For some cones, in analogy with the one-dimensional case, these exit probabilities can be obtained

explicitly using the reflection principle. If the reflected process is positive recurrent, then upon

differentiating we obtain a stationary density which can be written as a sum of exponentials.

Since the latter can thus be viewed as a natural multidimensional extension of the exponential

stationary density of one-dimensional SRBM, this raises the question under what circumstances the

stationary distribution of a given SRBM in a polyhedral cone has a sum-of-exponential density. This

paper shows that, for SRBM in a two-dimensional polyhedral cone, sum-of-exponential stationary

densities arise well beyond those cases to which the above arguments can be applied.

The stationary distribution of multidimensional SRBM in a polyhedral cone is only known in rel-

atively few cases. It has a density consisting of a single exponential term under a skew-symmetry

condition on the pushing directions on the faces [17, 25]. We also mention an apparently isolated

example due to Harrison [13] and work of Foschini [11]; we discuss the latter in more detail

below. In the absence of further explicit results, numerical techniques have been developed [6]

and logarithmic tail asymptotics have been investigated [3, 9, 14].

Before describing our results in more detail, we introduce some notation which is summarised in

Figure 1. Define the wedge as

S = {x ∈ R2 : 0≤ arg(x)≤ ξ}.

Throughout this paper we write wθ = (cosθ , sinθ) for θ ∈ R. Given some 0 < δ,ε,ξ < π, we

set v1 = ‖v1‖wδ, v2 = ‖v2‖wξ−ε. Let F1 and F2 be the two faces of the wedge. As is customary,

we normalise v1 and v2 such that 〈v1, n1〉 = 1 and 〈v2, n2〉 = 1, where n1 and n2 are the unit

normal vectors on F1 and F2, respectively. Let some vector µ ∈ R2 also be given, and write

θµ = arg(µ) ∈ (−π,π]. A key role in this paper is played by α, which is introduced by Varadhan

and Williams [22] as

α=
δ+ ε−π

ξ
.

Our results concern the case α < 1, and it is well-known (e.g., [22, 24]) that under this condition

there exists a continuous semimartingale Markov process with properies that can intuitively be

summarised as follows (we do not give the mathematically rigorous definition here, as it can be

found in, e.g., [3, 10, 24]). The process behaves like a standard Brownian motion with drift −µ in

the interior of the wedge S, at the boundary of the wedge it is pushed in some specified direction,

and the time it spends at the vertex of the wedge has Lebesgue measure zero. The pushing

directions are constant along each of the faces, and are given by vi for the i-th face. We call this

process SRBM in a wedge and seek its stationary distribution, which is absolutely continuous with

respect to Lebesgue measure [5, 16].

We prove that the stationary density of this process is a sum of exponentials if and only if α =

−ℓ for some nonnegative integer ℓ. Moreover, it follows from our results that the number of

exponential terms is 2ℓ+ 1 when α = −ℓ. Note that this condition reduces to δ = π− ε if ℓ = 0,

i.e., the skew-symmetry condition for product forms [17]. In fact, we show that the stationary

density can be written as an (ℓ+ 1)× (ℓ+ 1) determinant with a special structure. A corollary is

that the density behaves near the origin as in the driftless case studied earlier by Williams [23].

We next discuss some work related to our additive generalisations of the product form exponential

stationary density. To our knowledge, Foschini’s study of symmetric SRBM in the wedge [11] was

the first to consider sum-of-exponential stationary densities. Our paper is a continuation and ex-

tension of Foschini’s work, in the sense that we couple key ideas from his algorithm with geometric
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Figure 1: The wedge S.

arguments suggested by the reflection principle, and consequently obtain an explicit formula for

the stationary density. A discrete-state space version of Foschini’s algorithm, the compensation

method, has been successfully applied to a variety of queueing problems [1, 2]. Another body of

work loosely related to the present paper studies (driftless) two-dimensional SRBM with α = −1

[8, 19], motivated by a connection with Schramm-Loewner evolutions.

This paper is organised as follows. Section 2 gives some background and discusses the special

sum-of-exponential stationary densities mentioned above. Section 3 contains our main result and

gives a geometric construction of the stationary density. In Sections 4–6, we prove the main result.

2 Survival probabilities, reflection groups, and Weyl chambers

This section describes a special class of sum-of-exponential stationary densities which can be ob-

tained directly using time reversal. These densities motivate our main result, since they typify the

general structure of a sum-of-exponential stationary density.

Consider an SRBM as in Figure 1, with drift −µ and δ = ε = ξ. Suppose that µ ∈ So (the interior

of S) to ensure positive recurrence, and write Π for the stationary measure of the SRBM. Time

reversal gives

Π({y ∈ S : 〈y, n1〉 ≤ 〈x , n1〉, 〈y, n2〉 ≤ 〈x , n2〉}) = P−x(T =∞), (1)

where Py is the law of the corresponding free Brownian motion B starting in y and T is the first

exit time from −S, i.e., T = inf{t ≥ 0 : B(t) 6∈ −S}. To see this, we use the wedge −S to define a

partial order < on R2 (see for example [20]) and then if B̃s = Bt−s − Bt ,

sup{Bs : 0≤ s ≤ t} − Bt < x if and only if (2)

sup{−x + B̃s : 0≤ s ≤ t} < 0, (3)

where sup denotes the supremum with respect to the partial order. On the left hand side of (3)

is the supremum over [0, t] of the free Brownian motion starting in −x , while on the left hand

side of (2) we have an SRBM in S as defined above (starting in 0; for details see [20]). Applying

Wiener measure to (2)–(3) and letting t →∞ gives (1).
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Biane et al. [4] have recently shown that if the wedge angle is of the form ξ = π/m for some

integer m≥ 2 then

P−x(T =∞) =
∑

w∈G

sgn (w)e−〈µ,(I−w)x〉 (4)

for any x ∈ So and any µ ∈ So, where the sum is taken over the finite reflection group G with

associated signature function sgn(·), as detailed below. We remark that this formula gives the

probability that a standard Brownian motion with drift never exits a so-called Weyl chamber—in

particular, it is not restricted to a two-dimensional setting.

We next describe the index of summation in (4), i.e., the elements of the reflection group G.

Throughout, we represent any element of R2 as a column vector. Write Rθ for the reflection

matrix across the line with argument θ , i.e.,

Rθ =

�
cos 2θ sin 2θ

sin2θ − cos 2θ

�

and ρθ for the rotation matrix over an angle θ , i.e.,

ρθ =

�
cosθ − sinθ

sinθ cosθ

�
.

The group G consists of the 2m matrices I ,Rξ,ρ2ξ,ρ2ξRξ, . . . ,ρ2(m−1)ξ,ρ2(m−1)ξRξ. The signature

of the matrices ρ2kξRξ is −1, while the signature of the others is +1.

On combining (1) and (4), we find that the stationary density of SRBM with ξ = δ = ε = π/m is

proportional to ∑

w∈G

sgn (w)〈µ, (I −w)v2〉〈µ, (I −w)v1〉e
−〈µ,(I−w)x〉. (5)

This is a sum of 2m− 3 nonzero terms, since the prefactor vanishes when w = I , w = Rξ, and

w = ρ2(m−1)ξRξ. It is the aim of this paper to put the explicit formula (5) into the context of

more general SRBMs. Specifically, we show that every sum-of-exponential stationary density has

a representation reminiscent of (5).

3 Main results

This section presents our main result on sum-of-exponential stationary densities, and explains its

geometric interpretation. Our result shows that sum-of-exponential stationary densities can be

written as determinants with a special structure. The proofs are deferred to Sections 4–6.

The matrices

Rotk = ρ2δ+2kξ and Refk = ρ2δ+2(k−1)ξRξ (6)

for k ≥ 0 play an important role in our main theorem. Write

Θℓ = {θ ∈ (ξ− ε,δ) : sin(θ − 2δ− kξ) 6= 0 for k = 0, . . . , 2ℓ}.

We know from Hobson and Rogers [18] and from Dupuis and Williams [10] that there exists a

unique stationary distribution of the SRBM if ξ− ε < θµ < δ. Let pµ be its density with respect

to Lebesgue measure, and write e1 for the vector (1,0). For integers j, we also define the function

π
µ

j
: S→ R through

π
µ

j
(x) =

〈µ, (I −Rot j)v1〉e
−〈µ,(I−Rot j)x〉 − 〈µ, (I −Ref j)v1〉e

−〈µ,(I−Ref j)x〉

〈µ, (Ref j −Rot j)v1〉
.
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Observe that both pµ and π
µ

j
depend on δ,ε and ξ, which is suppressed in the notation.

Theorem 1. The following are equivalent:

(i) α=−ℓ for some integer ℓ≥ 0;

(ii) α = −ℓ for some integer ℓ ≥ 0 and for all µ with θµ ∈ Θℓ, the functions pµ and πµ are equal

up to a multiplicative constant, where for x ∈ S,

πµ(x) =

¯̄
¯̄
¯̄
¯̄
¯̄
¯̄

π
µ
0(x) π

µ
1(x) · · · π

µ

ℓ
(x)

〈µ, Rot0e1〉
ℓ−1 〈µ, Rot1e1〉

ℓ−1 · · · 〈µ, Rotℓe1〉
ℓ−1

...
...

...

〈µ, Rot0e1〉
2 〈µ, Rot1e1〉

2 · · · 〈µ, Rotℓe1〉
2

〈µ, Rot0e1〉 〈µ, Rot1e1〉 · · · 〈µ, Rotℓe1〉

1 1 · · · 1

¯̄
¯̄
¯̄
¯̄
¯̄
¯̄

; (7)

(iii) α < 1 and for some µ with ξ− ε < θµ < δ, there exist K < ∞, coefficients a1, . . . , aK , and

vectors d1, . . . , dK such that pµ admits the representation

pµ(x) =

K∑

i=1

aie
−〈di ,x〉.

In part (ii) of this theorem, the condition θµ ∈ Θℓ prevents a certain degeneracy which is funda-

mental to the problem. Indeed, it guarantees the linear independence of the exponential functions

in πµ. We remark that the determinant in (ii) has a different form than the ones recently studied

in connection with transition probabilities for certain Markov chains [7].

A straightforward calculation using Vandermonde matrices shows that the function πµ defined by

(7) may be written as

πµ(x) =

ℓ∑

k=0

ck

�
〈µ, (I −Rotk)v1〉e

−〈µ,(I−Rotk)x〉 − 〈µ, (I −Refk)v1〉e
−〈µ,(I−Refk)x〉
�

, (8)

where

ck = (−1)k

∏
0≤i< j≤ℓ; i, j 6=k〈µ, (Roti −Rot j)e1〉

〈µ, (Refk −Rotk)v1〉
. (9)

This representation for πµ is used later in the proof of Theorem 1; note that each exponential term

is characterised by a rotation or a reflection matrix, Rot0, Ref1, Rot1, . . . , Refℓ, Rotℓ.

Although there is not necessarily an underlying reflection group in the general setting of Theo-

rem 1, the rotation and reflection matrices in Theorem 1 suggest a connection with the reflection-

group framework. We illustrate this for α= −2 (hence ℓ= 2) in the leftmost diagram of Figure 2,

where we depict the five points Rot0 x , Ref1 x , Rot1 x , Ref2 x , Rot2 x for an arbitrarily chosen x ∈ S.

By construction, Rot0 x lies in the wedge ρ2δS, which we call the ‘initial wedge’. The other points

Ref0 x , Rot1 x , . . . are constructed by successive reflections, reminiscent of the orbit of Rot0 x under

the action of a reflection group. In particular

• Each point lies in one of the wedges constructed by rotating the initial wedge anticlockwise

over multiples of the wedge angle ξ.
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Figure 2: An anticlockwise construction of πµ (left) and a clockwise construction of π̃µ (right).

• Two points lying in adjacent wedges—that is, wedges which share a common boundary

line—are reflections of each other in that line.

Note that Ref0 x , although not contributing to πµ since (I − Ref0)v1 = 0, is also obtained by

reflection from Rot0 x . We indicate this by a dashed line in Figure 2.

If α= −ℓ then the last point lies in the wedge ρ2δ+2ℓξS, which is the same as ρ−2εS. On comparing

this with the initial wedge ρ2δS, it transpires that the last wedge in the anticlockwise construction

given above is the first wedge in the following clockwise construction. For k ≥ 0 we introduce the

matrices
gRotk = ρ−2kξ−2ε and ÝRefk = ρ−2(k−1)ξ−2εR0.

The rightmost diagram of Figure 2 illustrates a clockwise construction for the stationary density,

starting with the wedge ρ−2εS and labelling the points using the matricesgRotk and ÝRefk. The

problem is exactly the same as in the leftmost diagram, so by uniqueness the corresponding sum-

of-exponential densities must agree on S. We use this observation in the proof of Theorem 1.

We close this section by stating some properties of the function πµ defined in (7), which play an

important role in our proof of Theorem 1. These properties are proved in Section 4. We start with

a result for the coefficients {ck} defined in (9).

Lemma 1. Let −α = ℓ ∈ {1,2, . . .} and θµ ∈ Θℓ. The coefficients ck defined by (9) satisfy, for

1≤ k ≤ ℓ,

ck〈µ, (I −Refk)v1〉〈µ, (I −Rotk−1)v2〉= ck−1〈µ, (I −Refk)v2〉〈µ, (I −Rotk−1)v1〉. (10)

Using this lemma, it is readily checked that (5) is recovered from Theorem 1 by setting δ = ε =

ξ= π/m. Indeed, we then have 〈µ, (I −Rotk−1)v1〉= 〈µ, (I −Refk)v1〉, so that (10) reduces to

ck〈µ, (I −Rotk−1)v2〉= ck−1〈µ, (I −Refk)v2〉.

In this special case we may therefore set

ck = 〈µ, (I −Rotk)v2〉= 〈µ, (I −Refk)v2〉,

and we obtain (5).

The limiting behaviour of πµ given in the following proposition should be compared with the

invariant measure found by Williams [23] for reflected Brownian motion without drift. We abbre-

viate limr→0 f (r)/g(r) = 1 by f (r)∼ g(r) as r → 0.
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Proposition 1. If −α = ℓ ∈ {1,2, . . .}, then for any θ ∈ [0,ξ] and any µ with θµ ∈ Θℓ, we have

πµ(rwθ ) ∼ Cµrℓ sin(ℓθ + δ) as r → 0, where Cµ is a finite nonzero constant independent of r and

θ .

Our next result is that πµ defined by (7) does not change sign on S. Note that this resolves

Conjecture 1 in Dai and Harrison [6] for the special class of SRBMs studied in this paper.

Proposition 2. The function πµ does not change sign on S.

4 Properties of πµ

In this section, we prove the properties of πµ claimed in Section 3. The proof of the main result,

Theorem 1, is deferred to Sections 5 and 6.

4.1 Proof of Lemma 1

We first divide (10) by sin(θµ − δ− kξ) sin(δ+ (k− 1)ξ), which is nonzero as a consequence of

the assumption on µ in conjunction with the identity δ+ε= π− ℓξ. Again using this identity, we

find after some elementary trigonometry that (10) is equivalent to, with ωk = θµ − 2δ− kξ,

ck sin(kξ) sin(ωℓ+k) =−ck−1 sin((ℓ+ 1− k)ξ) sin(ωk−1).

To show that this holds for the ck defined in (9), we observe that

〈µ, (Refk −Rotk)v1〉 sin(ω2(k−1)) = 〈µ, (Refk−1 −Rotk−1)v1〉 sin(ω2k)

and that

〈µ, (Roti −Rot j)e1〉= −2 sin(( j − i)ξ) sin(ωi+ j).

After some algebra we also find that

sin(kξ) sin(ωℓ+k) sin(ω2(k−1))
∏

0≤i< j≤ℓ; i, j 6=k

〈µ, (Roti −Rot j)e1〉

= sin((ℓ− k+ 1)ξ) sin(ωk−1) sin(ω2k)
∏

0≤i< j≤ℓ; i, j 6=k−1

〈µ, (Roti −Rot j)e1〉,

and the claim follows.

4.2 Proof of Proposition 1

For simplicity we suppose that ‖µ‖ = 1. We first investigate the behaviour near zero of πµ(x), for

which we rewrite e〈µ,x〉πµ(x) using the determinantal representation (7). A key ingredient is the

identity er cos(η) = I0(r)+2
∑∞

n=1
cos(nη)In(r), where In is the modified Bessel function of the first

kind. Using this identity, after absorbing e〈µ,x〉 into the first row, we rewrite the elements on this
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row as

e〈µ,x〉π
µ

j
(x) = e‖x‖〈µ,Rot j wθ 〉 − 〈µ, (I −Ref j)v1〉

e‖x‖〈µ,Rot j wθ 〉 − e‖x‖〈µ,Ref j wθ 〉

〈µ, (Rot j −Ref j)v1〉
(11)

= I0(‖x‖) + 2

∞∑

n=1

Tn(cos(ω2 j − θ))In(‖x‖)

− 2
〈µ, (I −Ref j)v1〉

〈µ, (Rot j −Ref j)v1〉

∞∑

n=1

�
Tn(cos(ω2 j − θ))− Tn(cos(ω2 j + θ))

�
In(‖x‖)

= I0(‖x‖) + 2

∞∑

n=1

Tn(cos(ω2 j − θ))In(‖x‖)

− 2〈µ, (I −Ref j)v1〉

∞∑

n=1

sin(nθ)Un−1(cos(ω2 j))In(‖x‖),

where we again set ωk = θµ − 2δ− kξ, and Tn and Un are the Chebyshev polynomials of the first

and second kind, respectively.

In conjunction with some trigonometry, the above reasoning shows that

e〈µ,x〉π
µ

j
(x) = I0(‖x‖) +

2

sin(δ)

∞∑

n=1

h j,n(θ)In(‖x‖),

where h j,n(θ) is defined as

1

2
sin(nθ +δ)Un(cos(ω2 j))− 〈µ, v1/‖v1‖〉 sin(nθ)Un−1(cos(ω2 j)) +

1

2
sin(nθ −δ)Un−2(cos(ω2 j)).

(We use the convention U−1(x) = 0.) Therefore, e〈µ,x〉πµ(x) can be expanded in terms of modified

Bessel functions of the first kind, and for n≥ 1 the coefficient in front of In(‖x‖) is proportional to

¯̄
¯̄
¯̄
¯̄
¯

h0,n(θ) h1,n(θ) h2,n(θ) · · · hℓ,n(θ)

Uℓ−1(cos(ω0)) Uℓ−1(cos(ω2)) Uℓ−1(cos(ω4)) · · · Uℓ−1(cos(ω2ℓ))
...

...
...

U0(cos(ω0)) U0(cos(ω2)) U0(cos(ω4)) · · · U0(cos(ω2ℓ))

¯̄
¯̄
¯̄
¯̄
¯
. (12)

To see how this follows from (7), note that we may apply elementary determinantal operations to

replace a row with elements cos(ω2 j)
m by Um(cos(ω2 j)). The term I0(‖x‖) is not present in the

expansion in view of the last row in (12) with ones.

The condition θµ ∈ Θℓ guarantees that none of the cos(ω2 j) are equal, and we conclude that the

coefficient of In(‖x‖) vanishes for n < ℓ and that it is proportional to sin(ℓθ + δ) for n = ℓ. Since

Iℓ(r)∼ C rℓ for some constant C 6= 0 as r → 0, this yields πµ(rwθ )∼ Cµrℓ sin(ℓθ +δ).

4.3 Proof of Proposition 2

We rely on the following auxiliary lemma, whose proof is inspired by elementary symmetric-

function theory. Alternatively, as communicated to us by Sean Meyn, Proposition 2 can be proved

using a continuous-space analogue of Theorem 1 of Foster [12]; this can be derived using the

general theory of Markov processes.
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Lemma 2. Let ℓ ∈ {1,2, . . .} and ζ ∈ Rℓ+1. For any y > 0, the sign of the determinant

¯̄
¯̄
¯̄
¯̄
¯̄
¯

eζ0 y eζ1 y · · · eζℓ y

ζℓ−1
0 ζℓ−1

1 · · · ζℓ−1
ℓ

...
...

...

ζ0 ζ1 · · · ζℓ
1 1 · · · 1

¯̄
¯̄
¯̄
¯̄
¯̄
¯

equals the sign of
∏

0≤i< j≤ℓ[ζi − ζ j].

Proof. The statement is a continuous analogue of the claim that s(n,0,...,0)(ζ) is nonnegative for

ζ ≥ 0, where sλ is a symmetric polynomial known as a Schur polynomial (or, in this special case,

a complete homogeneous symmetric polynomial).

By induction on ℓ one can show that the given determinant equals

∏

0≤i< j≤ℓ

[ζi − ζ j]

∫

0=z−1≤z0≤...≤zℓ−1≤zℓ=y

eζ0(z0−z−1) · · · eζℓ(zℓ−zℓ−1)dz0 · · · dzℓ−1,

and the claim follows. �

We now prove Proposition 2. By the Maximum Principle (see Theorem 2.5 of [21] for a suitable

form), neither the minimum nor the maximum of πµ over S is attained in the open set So. We

therefore investigate the boundary.

We first prove that πµ(x)→ 0 as ‖x‖ →∞ by showing that, for any x ∈ S,

〈µ, (I −Rotk)x〉> 0, k = 0, . . . ,ℓ,

〈µ, (I −Refk)x〉> 0, k = 1, . . . ,ℓ.

Set θ = arg x . For the claim involving Rotk, we observe that

〈µ, (I −Rotk)x〉= −2‖x‖ sin(δ+ kξ) sin(θµ − θ −δ− kξ).

Since 0< δ+kξ≤ δ+ℓξ= π−ε < π and we have θ < ξ and the stability condition ξ−ε < θµ < δ,

we obtain −π < θµ−θ −δ−kξ < 0. The same argument works for the claim involving Refk, now

relying on

〈µ, (I −Refk)x〉=−2‖x‖ sin(δ+ kξ− θ) sin(θµ −δ− kξ)

and the assumption k ≥ 1.

We next prove that the signs of πµ(rw0) and πµ(rwξ) are equal and independent of r > 0. The

equality of the signs follows from Proposition 1 after showing that they do not depend on r.

From Lemma 2 with ζ j = 〈µ, Rot je1〉 and (11) we conclude this for πµ(rw0). Applying the same

argument ‘clockwise’ shows that this also holds for πµ(rwξ).

5 The BAR and a PDE with boundary conditions

This section prepares for the proof of Theorem 1 by relating the stationary density to a partial

differential equation (PDE) with boundary conditions involving the pushing directions.
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5.1 The BAR

Our proof of Theorem 1 requires the Basic Adjoint Relationship (BAR) as presented in following

proposition, which is implied by Propositions 3 and 4 in [6]; see [5] for proofs.

Proposition 3. Suppose that α < 1 and assume the existence and uniqueness of a stationary distri-

bution for the SRBM.

A nonzero finite measure ν0 on S is proportional to the stationary distribution if and only if there

exist finite measures ν1 on F1 and ν2 on F2 such that for any f ∈ C2
b
(S)

∫

S

�
1

2
∆ f − 〈µ,∇ f 〉

�
dν0 +

∫

F1

〈v1,∇ f 〉dν1 +

∫

F2

〈v2,∇ f 〉dν2 = 0 (BAR).

Let σ and σi be the Lebesgue measures on S and Fi , respectively. Write v∗
i
= 2ni − vi .

Proposition 4. Let p ∈ C2(S) be nonnegative and integrable over S.

If (BAR) is satisfied with dν0 = p dσ and dνi = p/2 dσi , then

∆p+ 2〈µ,∇p〉 = 0 on So, (13)

〈v∗
1
,∇p〉+ 2〈µ, n1〉p = 0 on F o

1
, (14)

〈v∗
2
,∇p〉+ 2〈µ, n2〉p = 0 on F o

2
. (15)

Conversely, if (13)–(15) hold and moreover p(0) = 0, then (BAR) is satisfied with dν0 = p dσ and

dνi = p/2 dσi .

Proof. We may repeat the arguments in the proof of Lemma 7.1 of Harrison and Williams [17].

The additional assumption p(0) = 0 ensures that (7.8) in [17] automatically holds. �

The above proposition motivates investigating sum-of-exponential solutions to (13)–(15).

5.2 Sum-of-exponential solutions to the PDE

In this subsection we study some properties of sum-of-exponential solutions to the PDE (13) plus

either boundary condition (14) or (15). We use the following observation, due to Foschini [11,

Sec. III.A].

Lemma 3. Let p be given by p(x) =
∑k

i=1
aie
−〈ci ,x〉 for some k < ∞, ai 6= 0, and ci 6= 0 such that

ci 6= c j if i 6= j.

If p satisfies (13) and (14), then for each i = 1, . . . , k precisely one of the following holds:

1. x 7→ e−〈ci ,x〉 satisfies (14), or

2. there exists a unique j 6= i such that x 7→ aie
−〈ci ,x〉 + a je

−〈c j ,x〉 satisfies (14) and we have

〈ci , w0〉= 〈c j , w0〉.

By symmetry, Lemma 3 also holds when (14) is replaced by (15), provided the condition 〈ci , w0〉=

〈c j , w0〉 is replaced by 〈ci , wξ〉 = 〈c j , wξ〉. The next two lemmas investigate the two scenarios of

Lemma 3 in more detail; Lemma 4 may be regarded as a generalisation of Theorem 6.1 of [17]

(modulo the discussion of the BAR in Section 6).

Lemma 4. Let p(x) = e−〈c,x〉 for some c 6= 0.
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1. If p satisfies (13) and (14), then either p(x) = e−〈µ,(I−ρ2δ)x〉 or p(x) = e−〈µ,(I−R0)x〉.

2. If p satisfies (13) and (15), then either p(x) = e−〈µ,(I−ρ−2ε)x〉 or p(x) = e−〈µ,(I−Rξ)x〉.

Proof. We only prove the first claim, the second being the clockwise analogue. The condition

that p satisfies (13) translates to ‖c − µ‖ = ‖µ‖. We may therefore write c = µ−ρ−2γµ for some

γ ≡ γ(µ). Next we substitute this in (14), yielding −〈µ, (I − ρ2γ)v
∗
1
〉 + 2〈µ, n1〉 = 0, which we

may rewrite as 〈µ, v1 + ρ2γv
∗
1
〉 = 0 since v∗

1
= 2n1 − v1. Using v∗

1
= −Rδρ2δv1, we get 〈µ, (I −

ρ2(γ−δ))v1〉= 0. This can only be the case if γ= δ mod π or γ= θµ mod π. �

The next result investigates the second scenario of Lemma 3.

Lemma 5. Let p be given by p(x) = a1e−〈c,x〉 + a2e−〈d,x〉 for some a1, a2 6= 0, c, d 6= 0, and c 6= d.

1. If 〈c, w0〉= 〈d, w0〉 and p satisfies (13) and (14), then there exists some γ≡ γ(µ) ∈ (0,π) such

that p is proportional to pγ defined by

pγ(x) = 〈µ, (I −ρ2γ+2δ)v1〉e
−〈µ,(I−ρ2γ+2δ)x〉 − 〈µ, (I −ρ2γ+2δR0)v1〉e

−〈µ,(I−ρ2γ+2δR0)x〉.

2. If 〈c, wξ〉 = 〈d, wξ〉 and p satisfies (13) and (15), then there exists some γ̃ ≡ γ̃(µ) ∈ (0,π)

such that p is proportional to p̃γ̃ defined by

p̃γ̃(x)=〈µ, (I −ρ−2γ̃−2ε)v2〉e
−〈µ,(I−ρ−2γ̃−2ε)x〉 − 〈µ, (I −ρ−2γ̃−2εRξ)v2〉e

−〈µ,(I−ρ−2γ̃−2εRξ)x〉.

Proof. Again we only prove the first claim. By linear independence both e−〈c,x〉 and e−〈d,x〉 must

satisfy (13) individually. As in the proof of Lemma 4, we may therefore write c = µ− ρ−2δ−2γµ

for some γ ≡ γ(µ) ∈ [0,π), so that 〈c, x〉 = 〈µ, (I − ρ2γ+2δ)x〉. From 〈c, w0〉 = 〈d, w0〉 and c 6= d

we conclude that 〈d, x〉= 〈µ, (I −ρ2γ+2δR0)x〉.

It remains to study a1 and a2, for which we use (14). Since 〈c, w0〉= 〈d, w0〉 we obtain that on F1,

〈v∗
1
,∇p(x)〉=−[a1〈µ, (I −ρ2γ+2δ)v

∗
1
〉+ a2〈µ, (I −ρ2γ+2δR0)v

∗
1
〉]e−〈c,x〉.

With v∗
1
= 2n1 − v1, we conclude that (14) implies

a1〈µ, v1 +ρ2γ+2δv∗
1
〉+ a2〈µ, v1 +ρ2γ+2δR0v∗

1
〉= 0.

The result follows after using v∗
1
=−R0v1 and noting that 〈µ, (I −ρ2γ+2δR0)v1〉 cannot be zero. �

We remark that Lemmas 3–5 show that some structure from the particular example of Section 2

holds in general. Specifically, each exponent in a sum-of-exponential solution equals −〈µ, (I −

M)x〉 for some reflection or rotation matrix M .

6 Proof of Theorem 1

To prove our main result, it suffices to show that (i) implies (ii) and that (iii) implies (i). We start

with the latter.
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6.1 Proof that (iii) implies (i)

By assumption, there is some µ with ξ− ε < θµ < δ such that the stationary density has the form

pµ(x) =

k∑

i=1

aie
−〈ci ,x〉. (16)

We assume without loss of generality that the ai are nonzero and that the ci are distinct. We may

also restrict ourselves to the case of more than one summand (k > 1), since the k = 1 case has

already been studied [15, 17].

We next argue that pµ satisfies (13)–(15). To this end, in view of Proposition 4, we need to show

that (BAR) is satisfied with dν0 = pµ dσ and dνi = pµ/2 dσi . We do so using an argument due

to Harrison and Williams [16, p. 108]. From Proposition 3 we know that (BAR) holds for some

measures ν1,ν2. Let λ ∈ R2 satisfy 〈λ, x〉 ≥ 0 for all x ∈ S. On substituting f (x) = e−〈λ,x〉 in (BAR)

we find

�
1

2
‖λ‖2 + 〈µ,λ〉

�∫

S

e−〈λ,x〉pµ(x)d x − 〈v1,λ〉

∫

F1

e−〈λ,x〉ν1(d x)− 〈v2,λ〉

∫

F2

e−〈λ,x〉ν2(d x) = 0.

Let us first focus on ν1. Write λ= λ1w0+λ2n1, and let λ2→∞ after dividing the above equation

by λ2. To evaluate the resulting limit of the first term, we use the initial value theorem to obtain

lim
λ2→∞

λ2

∫

S

e−〈λ,x〉pµ(x)d x =

∫ ∞

0

e−λ1s pµ(sw0)ds.

After taking the limits of all other terms as well (recalling that 〈v1, n1〉 = 1), we conclude that∫
F1

e−λ1 x1ν1(d x) =
∫∞

0
e−λ1z pµ((z, 0))dz/2 for λ1 ≥ 0. The uniqueness theorem for Laplace trans-

forms thus yields dν1 = pµ/2 dσ1. A similar argument works to show dν2 = pµ/2 dσ2 by studying

λ= λ1wξ +λ2n2 for large λ2.

In the remainder of this subsection, it is our aim to further specify the structure of pµ defined in

(16) when it solves (13)–(15). Lemmas 3–5 play a central role in this analysis.

Graph representation.

It is convenient to represent pµ by an undirected labelled graph G, with k vertices, as follows.

Each vertex represents a summand aie
−〈ci ,x〉 in (16), and we say that two vertices are joined by a

BC1 edge (respectively BC2 edge) if the sum of the terms corresponding to these vertices satisfies

(13) and (14) (respectively (13) and (15)). Note that by Lemma 3, at most one BC1 edge and at

most one BC2 edge can be incident at any given vertex. Therefore, the degree of the vertices in G

cannot exceed two, and BC1 edges and BC2 edges alternate along any path. Here and throughout,

we say that a subgraph of G is a path if it is connected and acyclic. The length of a path equals

its number of vertices. The vertex corresponding to the summand e−〈c,x〉 is labelled by the matrix

M for which 〈c, x〉 = 〈µ, (I − M)x〉, and we refer to this vertex as an M vertex. Note that M is

necessarily a reflection or rotation matrix. Although M is uniquely defined for any of the vertices

of G, it has several representations—for example, we also refer to an Rξ vertex as a ρ2ξR0 vertex.

We refer to a path between an M1 vertex and and M2 vertex as an ‘M1 −M2 path’.
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BC1BC1 BC2BC2

ρ2δ ρ2δRξ ρ2δ+2ξ ρ2δ+2ξRξ ρ2δ+4ξ

Figure 3: An example labelled graph. By (6), this graph corresponds to the reflection construction

in the leftmost diagram of Figure 2. If α = −2 then this graph also corresponds to the rightmost

diagram of Figure 2.

Mating procedure.

Given the label of any vertex in G, we can specify the labels of all other vertices in the same

connected component. For let M1, M2 be the labels of two arbitrary vertices joined by a BC1 edge:

then by Lemma 5, the sum of the corresponding exponential terms is proportional to pγ for some

γ ∈ (0,π). We will say that M1 is the BC1 mate of M2. By considering separately the cases when

M1 is a reflection and a rotation, it is easy to see that {M1, M2} = {ρ2β ,ρ2β−2ξRξ} for some angle

β ∈ (−π,π]. Similarly, the labels of two arbitrary vertices joined by a BC2 edge are {ρ2β ,ρ2βRξ}

for some β ∈ (−π,π]. Any path in G—beginning for example with a BC2 edge—therefore has

labels ρ2β ,ρ2βRξ,ρ2β+2ξ, . . . for some β .

Example.

To illustrate the graph representation and mating procedure, suppose that one summand in (16)

has exponent −〈µ, (I − ρ2δ)x〉. In the graph representation, this summand is represented by

a vertex with label ρ2δ: suppose there exists a path of length 5 starting at this vertex, and

that its first edge is a BC2 edge. By the mating procedure, the vertex labels for this path are

ρ2δ,ρ2δRξ,ρ2δ+2ξ,ρ2δ+2ξRξ,ρ2δ+4ξ, cf. Figure 3. By (6), this path corresponds to the reflection

construction in the leftmost diagram of Figure 2.

Proposition 5. Let the stationary density pµ be of the form (16). If G is the labelled graph corre-

sponding to pµ then:

• G is a ρ2δ −ρ−2ε path;

• The number of vertices in G is odd;

• α=−ℓ for some integer ℓ≥ 0.

Proof. As usual we exclude the case α = 0. Since pµ is a density, each exponent in (16) is

nonpositive and pµ(x)→ 0 as ‖x‖ →∞ in S.

A key tool in the proof is the following range restriction for the reflection labels. That is, G cannot

contain an Rγ vertex if wγ ∈ So or −wγ ∈ So. Suppose a contrario that G contains an Rγ vertex and

that Lγ ∩ So 6= ;, where Lγ is the line {rwγ : r ∈ R}. We must then have µ ∈ Lγ since otherwise

the exponent x 7→ −〈µ, (I −Rγ)x〉 changes sign in So on either side of Lγ. However, if µ ∈ Lγ then

−〈µ, (I − Rγ)x〉 = 0 for all x , but such a constant exponent (which must be unique) contradicts

pµ(x)→ 0.

G is acyclic. Suppose that G contains a cycle G0, of length 2m say (note that cycles of odd length

are impossible by the mating procedure). Taking an arbitrary rotation label ρ2β from G0, we must

have ρ2β = ρ2β+2mξ by cyclicity and the mating procedure, so that ξ = nπ/m for some integer

n ≥ 1. The reflection labels in G0 are readily seen to be Rβ+kξ, k = 1, . . . , m, so range restriction

yields Lβ+kξ ∩ So = ; for each k = 1, . . . , m. Using this in conjunction with the fact that (by
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uniqueness of the reflection labels) {Lβ+knπ/m : k = 1, . . . , m} = {Lβ+kπ/m : k = 1, . . . , m}, we

deduce that n = 1 and that Rβ+kξ = R0 for some k. By the proof of Lemma 4 R0 must be a vertex

of degree 1, so this is a contradiction.

G does not contain the label R0, nor does it contain the label Rξ. We only prove that G does not

contain the vertex R0; similar arguments can be given for Rξ. Suppose that G contains the vertex

R0, and consider the sum-of-exponentials pµ(x) corresponding to G when x lies on the boundary

F1. There is a constant nonzero term since (I − R0)w0 = 0, so to ensure pµ(rw0)→ 0 as r →∞

there must be another exponent that vanishes on F1. First observe that R0 is the only reflection

label that can possibly correspond to a constant term on F1 (as shown already, µ 6∈ Lγ if G contains

the label Rγ so µ cannot be orthogonal to (I − Rγ)w0). All rotation vertices in G correspond

to exactly the same exponents on F1 as their possible BC1 mates, which are reflection vertices

necessarily different from R0, whence none of the vertices joined by a BC1 edge can represent

the term constant on F1. Therefore, in view of Lemma 4, the only remaining possibility is that G

contain a vertex labelled ρ2δ which corresponds to the constant on F1. However, this contradicts

our assumption that ξ− ε < θµ < δ.

We have now proved that G is a ρ2δ − ρ−2ε path, and by the mating procedure the number of

terms is odd, say 2ℓ+ 1. The mating procedure also shows that we must have ρ−2ε = ρ2ℓξ+2δ, so

that δ+ ε+ ℓξ = nπ for some integer n ≥ 1. The range restriction on the reflection labels entails

that Lδ+ξ, Lδ+2ξ, . . . , Lδ+ℓξ 6∈ So. None of these lines can be equal to L0, since this would imply

that R0 is a label in G. We deduce that δ+ ℓξ < π, and therefore n= 1. �

To continue our example, suppose that α = −2. Then ρ2δ+4ξ = ρ−2ε and so the graph in our

example also corresponds to the rightmost diagram in Figure 2. Then G has 5 vertices, so that pµ

has k = 5 exponential terms.

6.2 Proof that (i) implies (ii)

Suppose that α = −ℓ for some ℓ ∈ {1,2, . . .}, and consider a µ with θµ ∈ Θℓ. We shall use

the representation (8) and Lemma 1 to argue that πµ must equal the stationary density up to a

multiplicative constant. We first argue that πµ satisfies (13)–(15).

The proofs of Lemmas 4 and 5 show that πµ satisfies (13) and (14). To see that πµ also satisfies

(15) we note that, for any constants d0, . . . , dℓ, the function π̃µ defined on S by

π̃µ(x) = d0〈µ, (I −ρ−2ε)v2〉e
−〈µ,(I−ρ−2ε)x〉 + d1 p̃ξ(x) + d2 p̃2ξ(x) + . . .+ dℓ p̃ℓξ(x) (17)

satisfies (13) and (15) (p̃θ is defined in Lemma 5). Using ε+ δ + ℓξ = π, on investigating the

exponents we find that πµ and π̃µ are linear combinations of the same exponential terms, so it

suffices to show that the coefficients are proportional to each other. To do so, we write

πµ(x) = cℓ〈µ, (I −Rotℓ)v1〉e
−〈µ,(I−Rotℓ)x〉

+

ℓ∑

k=1

�
cℓ−k〈µ, (I −Rotℓ−k)v1〉e

−〈µ,(I−Rotℓ−k)x〉

− cℓ−k+1〈µ, (I −Refℓ−k+1)v1〉e
−〈µ,(I−Refℓ−k+1)x〉
�

.

Equating the coefficients with (17), we find that πµ satisfies (13)–(15) if for k = 1, . . . ,ℓ,

cℓ−k〈µ, (I −Rotℓ−k)v1〉〈µ, (I −Refℓ−k+1)v2〉

= cℓ−k+1〈µ, (I −Refℓ−k+1)v1〉〈µ, (I −Rotℓ−k)v2〉,
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and this is the recursion given in Lemma 1 (the condition θµ /∈ Θℓ guarantees that none of the

four inner products in (10) is zero).

Now that we know that πµ satisfies (13)–(15), it remains to show that it is a multiple of the

stationary density. Proposition 2 and its proof show that πµ is integrable and single signed. More-

over, Proposition 1 implies that πµ(0) = 0. We therefore conclude from Proposition 4 that (BAR)

is satisfied with dν0 = π
µ dσ and dνi = π

µ/2 dσi . The claim thus follows from Proposition 3.
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