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CHAPTER 5

Systems of Equations

5.1 Introduction

This chapter is concerned with methods for solving the
following system of n simultaneous equations in the n
unknowns Xy, X, ..., X,:

fl(xl’xb .. .,x,,) =0, -
fz(xuxz, .. .,X,,) =0,

fn(xlsxz, asoy X,,) =0.

The general case, in which the functions f,, f3, ..., f, do
not admit of any particular simplification, is treated in
Sections 5.8 and 5.9. However, if these functions are
linear in the x’s, (5.1) can be rewritten as:

byyXy + byaXy 4+ - 0+ byaXe = Uy,
by1Xy + baaXy 4+ + bopXp = U,

(5.2
b,nx! + b,,zxz + A + b,,,,x,, = u,,.
More concisely, we have
Bx =u, (5.3)

in which B is the matrix of coefficients, u = [uy,u3, . .., 4p]’
is the right-hand side vector, and x = [x;,X3, ..., x,]' is
the solution vector. Assuming negligible computational
round-off error, direct methods for solving (5.2) exactly,
in a finite number of operations, are discussed in Sections
5.3, 5.4, and 5.5. These direct techniques are useful when
the number of equations involved is not too large (typi-
cally of the order of 40 or fewer equations). lterative
methods for solving (5.2) approximately are described in
Sections 5.6 and 5.7. These iterative techniques are more
appropriate when dealing with a large number of simul-
taneous equations (typically of the order of 100 equations
or more), which will often possess certain other special
characteristics. ' ‘

52 Elementary Transformations of Matrices

Before studying systems of equations, it is useful to
consider the three types of elementary matrices:

1. An elementary matrix of the first kind is an n x n
diagonal matrix Q, formed by taking the identity matrix

G

I and replacing the ith diagonal element with a nonzero
constant g. For example, withn =4 and i =3,

1 000
0100
Q={g o q O}
0001
Note that det Q =g, and that the inverse matrix Q* =
diag (1, 1, 1/g, 1) is again like I, this time with 1/g in the
ith diagonal position.
2. An elementary matrix of the second kindis ann x n
matrix R, formed by interchanging any two rows i and

j of L For example, with n=4, i=1, and j=3,

0

Note that det R = —1, and that R is self-inverse, that is,
RR=1

3. An elementary matrix of the third kind is an n x n
matrix S, formed by inserting a nonzero constant s into
the i, j (i # ) element of I (This may also be construed
as taking I and adding a multiple s of each element in
row j to the corresponding element in row i.) For example,
withn=4,i=3,andj=1, :

1000
0100
S=ls 01 of
0001

Note that detS = 1.

Premultiplication of an arbitrary n x p matrix A by
one of these elementary matrices produces an elementary
transformation of A, also termed an elementary row
operation, on A. As examples, we form the products QA,

_RA,andSA,withn=3,i=2,j=3, and p=4.

1. . -l 0 0 auk a2 43 Q14
- QA=|0 ¢ 0][“21 azz Qs 024]
LO 0 1]las, a3z a3 Ay
[ @y, @12 G413 Gia
=|qa8;1 9qa:2 4423 qau]-
| a3y 433 Q33 G

269
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.
1 0 0]fayy ay; ays ay,
RA = 0 0 1 dsy ‘azz [/ P%) asy
[0 1 O0)las; a3, a3 as,
a3 412 @3 444
=1}q3; QA3; 433 4asz|.
321 G2 Q33 A4y,
3. -1 0 0 a1 4z a;s a14
SA=|01 s Az1 Qz2 Gz33 Qaig
[0 0 1flas; a3, as; aj,
ay asz a3 Q14
=]Q34 +5a3; A2 + 5033 A3+ SA33 Aaq + 5a3,].
aszy asza a3 a3s

It is apparent that premultiplication by the elementary
matrices produces the following transformations of A:

1. QA: Multiplication of all elements of one row by a
scalar.

2. RA: Interchange of two rows.

3. SA: Addition of a scalar multiple of elements of
one row to the corresponding elements of another row.

Observe that in each case the original elementary
matrix can be formed from the identity matrix I by
manipulating it exactly as we wish to have A manipulated.

Postmultiplication of an arbitrary p x n matrix A by
one of the elementary matrices is called an elementary
column operation. The three types of operations produce
the following results:

1. AQ: Multiplication of all elements of one column
by a scalar.
2. AR: Interchange of two columns.

3. AS: Addition of a scalar multiple of elements of one

column to the corresponding elements of another column.

If A is any matrix and T is the matrix resulting from
elementary row or column operations on A, T and A are
termed equivalent matrices. For the examples given above,
if A is a square matrix,

© det(QA) =det Q x det A=g det A;
det(RA) =det R x det A = —det A;
det(SA) = det S x det A = det A.

Thus, multiplication of all the elements of one row of a
square matrix by a scalar also multiplies the determinant
of the matrix by that scalar. Interchange of two rows
changes the sign of the determinant (but not its magnitude),
and addition of a scalar multiple of elements of one row
to the corresponding elements of another row has no
effect on the determinant.

Clearly, the product of elementary matrices is non-
singular, for each component has an inverse. It is also
true that every nonsingular matrix can be written as a
product of elementary matrices.

5.3 Gaussian Elimination

The direct methods of solving equations (5.2) are based
on manipulations using the techniques expressed by the
elementary matrices of Section 5.2. We now describe
one such method, known as Gaussian elimination.
Consider a general system of three linear equations:

byyxy + byax; + byaxs =uy,

ba1xy + bayxy + bazx; =u,, (54

b31x1 + b32x2 + b33X3 =uj.

As a first step, replace the second equation by the result
of adding to it the first equation multiplied by —b,,/b,,.
Similarly, replace the third equation by the result of
adding to it the first equation multiplied by —b;,/b,,.
The result is the system

by1xy + byax; + by3xs =uy,

b32x; + by3x; = uj,

(5.5)

’ ’ '
b32x2 + b33X3 =Uj3.

in which the 5" and «’ are the new coefficients resulting
from the above manipulations. Now multiply the second
equation of (5.5) by —b},/b5,, and add the result to the
third equation of (5.5). The result is the triangular system

bysxy + byax; + by3xs =uy,

’ r ’
b32x; + ba3x; = uj,

(5.6)

n n
bisx3 =uj,

in which b3; and uj result from the arithmetic operations.
The system (5.6) is readily solved by the process of back-
substitution, in which x; is obtained from the last equa-
tion; this allows x, to be obtained from the second
equationr, and then x; can be found from the first
equation.

The above method seems primitive at a first glance,
but by the time it has been made suitable for implementa-
tion by automatic machines, it furnishes a powerful tool
not only for solving equations (5.2), but also for finding
the inverse of the related matrix of coefficients B, the
determinant of B, the adjoint of B, etc.

Insofar as reaching (5.6) is concerned, all can be ex-
plained in terms of elementary matrices of the third
kind. Note that matrices alone suffice, the presence of
X1, X, and x5 being superfluous. Define an augmented
matrix C consisting of the original coefficient matrix B
with the right-hand side vector u appended to it. That is,

byy byy by, u
C=[B I u] = |by; byy by ut,
byy by by u,

in which the broken line denotes matrix partitioning.
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Also define three elementary matrices of the third kind:

1 o0 0 10 0
sl_-b—zll ol s,=| 0 1 0}
us v o 1
o o 1 -
11
1t 0 0
S,=|0 1 0
0 -2 1
b2

The 'operations producing (5.6) from (5.4) can then be
expressed as

by, bz bys %y
S3stlc =]0 b’zz b'z3 ulz .
0 0 gs ug
The back-substitution is expressed in terms of premulti-
plication by elementary matrices of the first and third

kinds. Let Q,, Q,, and Q; denote the three matrices of

the first kind which are needed. For example,

1 0 ©
Q=lo 1 o
1

0 0 -

”

33

Then, with three more matrices of the third kind, which

we call S,, S, and Sg, the complete sequence of opera- -

tions results in

1 00 x
QSS6SSQZS4QIS35251C= 0 1 0 X2 1.
0 0 1 x;3)

Let E denote the product of these nine elementary
matrices. Then EC = E[B{u] =[I|x], whence EB=1I
and E = B~!. Hence, as a byproduct of solving equations
such as (5.4) by elimination, we see that proper planning
can produce B~1. Clearly, we need not solve equations
at all if only the inverse is needed, for in that event the
column u is superfluous.

Since EB = I, det(E) det(B) = det(T) = 1. From Section
5.2, the determinant of an S or third-kind elementary
matrix is unity, whereas the determinant of a Q or first-
kind matrix equals the value of that diagonal element
which is usually not unity. Hence det(E)= det(Q3)
x det(Q,) det(Q,). That is, det(E) is the product of the
diagonal elements (such as 1/b3) of the matrices Q,, Q,,
and Q, used in the elimination process. This means that
det(B) is the product of their reciprocals.

The above arithmetic operations can be separated into
two types: (a) normalization steps in which the diagonal
elements are converted to unity, and (b) reduction steps
in which the off-diagonal elements are converted to zero.

Note that by augmenting the coefficient matrix with
several right-hand side vectors, we can solve several sets
of simultaneous equations, each having the same coef-
ficient matrix, at little extra computational cost.

Example. Consider the system of equations

2x, —7x: +4x; =9,
X1 +9x; —6x3 = l,
—3x; + 8x2 4+ 5x3 =6,

for which the solution is x; =4,x;=1, and x3 =2, The
augmented matrix [B§u§l] will be formed, and the Gaussian
elimination procedure just described will be carried out,
except that the normalization steps will be introduced in a
somewhat different order. Starting with the matrix,

2 -7 4 9 1 0 0
1 9 -6 1 0 1 .04,
-3 8 5 6 o0 O 1

we multiply the top row by 1/2, add —1 times the new first
row to the second row, and 3 times the new first row to the
third row. The result is

-l I 2 2 : 0 0-1

2 2 2

25 7 1

ER it R B S
0 5 1 39 3 1
| T2 2 2 A

This is equivalent to having formed the equations

7
Xx—ixz'i‘ 2x3 = E,
25 fxs = 7
g X2 =T

5
—EXz+llX3= ‘2-

Note that the operations performed are equivalent to the

- matrix multiplication,

0 0T

0 1

! ]

which yields as a result

Nl NE= N -

8 7 9 1
1 -3 2 3 3 0 0.‘
25 7 1
0 7 -8 -3 -3 1 0}
0 3 11 3 3 0 1
L 2 2 2 4
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Returning to (5.7), multiply the second row by 2/25, and
then add 5/2 times the new second row to the third row. The
result is:

~ 7 9 1
1 —E 2 E 5 0 0
0 16 7 1 2 0
T25 25 T 25 25 '
o o ¥ X T 1 1
| _ 5 s 5 5 ]

The forward course has now been completed and, correspond-

ing to (5.6), we may write

7 9
xl‘—ixz'i‘ 2x3 = 5,
167
MR R T

47 94
5 X3 = 5.

To carry out the back-substitution, start by multiplying
the last row by 5/47. Then multiply the new last row by
16/25 and add to the second row. Multiply this same last row
by —2 and add to the first row. The result is

Systems of Equations

Inspection shows that the relevant diagonal elements are
simply the multiplying factors used in the normalization steps,
so that

det B = 123 _‘—235
et B = 2X25X47 = .

5.4 Gauss-Jordan Elimination

A variation that accomplishes the effect of back-
substitution simultaneously with the reduction of the
subdiagonal elements will now be illustrated, again for
the system,

2x; — Tx, + 4x3 =9,
Xy 4+ 9%, — 6x5 =1,
—3x1 + 8x2 + 5x3 = 6.

Suppose that B™! is required and form the augmented
matrix [B{u}I]:

2 -7 4 9 1 0 o0
1 9 -6 1 0 1 0].
-3 8 5 6 0 o0 1

As before, normalize the first tow by dividing by the pivot
element 2; then reduce the remaining elements of the
first column to zero by subtracting the new first row from
the second row, and also by subtracting —3 times the

-1 7, ! 19 2 107
T2 2 9% 47 47
o 4 1B o2 16
0 1 235 235 235
- 7 15
A 47 41 47

new first row from the third row. The result is

-

Finally, multiply the second row by 7/2 and add to the first.

The result is

[ o 0 4 B S 6]
1 35 235 235
o ;4 B 2 1]
o 1 235 235 235
b 0 1, 1 1 5
i a7 & A

This means, of course, that x; =4, x; =1, xs =2 and the

9 1

1 -3 2 5 5 0 0
25 7 1

0 > -8 -5 —= 1 of
5 39 3

0—511?501J

Next, normalize the second row by dividing by the pivot
element 25/2; then reduce the remaining elements of
the second column to zero by subtracting ~ (7/2) times the
new second row from the first row, and —(5/2) times
the new second row from the third row. Note that the
reduction process now involves both the subdiagonal and
superdiagonal elements. The result is .

inverse of the matrix of coefficients is

93 61 67
235 235 235
13 22 16|
235 235 235
7 1 5
47 47 47

p—

6 88 9 7

1 O—E .2—5- E 55 0
16 . 7 1 2
47 94 7 1

o 0 5 5 3 35 1

The determinant of the coefficient matrix B equals the
product of the reciprocals of the diagonal elements appearing
in the Q-type matrices involved in the above transformation.

Finally, normalize the last row by dividing by the pivot
element 47/5; then reduce the remaining elements of the
third column to zero by subtracting —(6/25) and —(16/25)
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times the new third row from the first and second rows,
respectively. The resulting matrix is [I|x | B™'], where x
is the solution vector, and B™! is the inverse of the original
matrix of coefficients:

i . 93 67 6|
10 0. 4 55 B35 235
13 22 16
0 1t 0 1 5% 35 ms)
7 1 5
0 0 2 4—7- E Ed

The determinant  of the original coefficient matrix is
again the product of the pivot elements and thus equals
2 x 25/2 x 47/5 or 235.

We conclude this section by developing an algorithm
for the above procedure, which is called Gauss-Jordan
elimination. Let the starting array be the n x (n + m)
augmented matrix A, consisting of an »n x n coefficient
matrix with m appended columns:

Q13 G122 "' Q14 Qip+1 Q342 A n+m
az1 Qaz2 Az2n Q2p+1 B2,n+2 A2n+m
Qpi A2 °°° Qpy an.n+ 1 au,n+2 an,n+m )

Let k = 1, 2, ..., n be the pivot counter, so that a,, is the
pivot element for the kth pass of the reduction. It is
understood that the values of the elements of A will be
modified during computation. The algorithm is

Normalization
ax
Ay = ’
a

Reduction
Q¢ Ay — Qpdyj,

j=n+mn+m-—1,..,k

Note (a) Since no nonzero elements appear to the left of
a,, in the kth row at the beginning of the kth pass, it is
unnecessary to normalize a,; for j <k; (b) In order to
avoid premature modification of elements in the pivot

column, the column counter j is always decremented from

i=12,..,n

its highest value (# + m) until the pivotcolumnisreached.
Thus far, elementary matrices of the second kind have
not been used; neither has mention been made of the
fact that at some stage, say the first, a potential divisor
or pivot, such as b,,, may be zero. In this event, we can
think of interchanging rows, which is expressible, of
course, in terms of elementary row operations of the
second kind. A related problem is that of maintaining
sufficient accuracy during intermediate calculations in
order ‘to achieve specified accuracy in the final results.
This might be expected for a nearly singular system; it
can also happen when the magnitude of one of the pivot
elements is relatively small. Consider, for instance, the
system
0.0003 x, + 3.0000 x, = 2.0001,
1.0000 x; + 1.0000 x, = 1.0000,

which has the exact solution x; = 1/3, x, = 2/3. If the
equations are solved using pivots on the matrix diagonal,
as indicated in the previous examples, there results

1.0000 x, + 10000 x, = 6667,
x, = 6666/9999.

If x, from the second equation is taken to be 0.6667, then
from the first equation x; = 0.0000; for x, = 0.66667,
x; =0.30000; for x,=0.666667, x; =0.330000, ectc.
The solution depends highly on the number of figures
retained. If the equations are solved in reverse order,
that is, by interchanging the two rows and proceeding as
before, then x, is found to be 1.9998/2.9997 = 0.66667
while x, =0.33333. This example indicates the advisa-

j=n+mn+m-—1,..,k

k=1,2,...n. (5.8)

(i#k)

bility of choosing as the pivot the coefficient of largest
absolute value in a column, rather than merely the first
in line. The handling of the situation is developed in more
detail in Example 5.2.

on to POgE 300
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5.5 A Finite Form of the Method of Kaczmarz

We consider the solution of (5.2) under the assumption
that B is nonsingular. The procedure consists in first
converting the system of (5.2) into an equivalent system,

Ax=v, A*=A"!, (5.9)

such that (5.9) and (5.2) have the same solution vector x.
Then, using an arbitrary initial vector, ro, we define

=r_y—[(a,r;_y) - v, I1<j<n, (5.10)

where A = (a;)) and a; = [d@;,,d;,,...,d;,). Then Ar,=v
and
Br,=u. é.11)

We show that (5.10) defines a vector r, such that

Ar, = v. Notice first that the equations of (5.9) may be

written

(d‘,x) = U‘, 1 S i s n.

Notice next that, multiplying (5.10) on the left by a;,
(@,r)) = v,
so that the jth equation of (5.9) is satisfied by r;. However,

(1) = (@154, i#J,
since (@,®) =0 for i#j Thus, if i<j, (a,r)=
(@r;—y) =+ =(a;, @) =v;,. We see inductively . that
Ar, = v, and the unique solution of (5.9) has been found.
Turn now to the solution of (5.2). Let B* = [B,,B,,
..., B.] where B; = [b,,,b,5, ..., b;,]'. A system equivalent
to (5.2) and having the properties of (5.9) is built in
orthodox manner from the linearly independent vectors
B: by using the Gram-Schmidt orthogonalization pro-
cedure, as follows. Let .

w="5::
Yi

\/~(Ya,Y;)’

: J-1
Y;=B;— ‘;l(“aspj)ﬂu 2g j<n

<i<n; (5.12)

Then it is readily found that (&;,&,) = 1, while (&) =0
if i#j is shown to be true inductively. Thus, if
A*=[o,@,,...,a,], then A* = A~ This is verified by
direct multiplication. Finally, let

Uy

£ Y, (YI’YI-)’

0y = e {u |- Jil(ﬁj,a,)v,}. (5.13)
\/ (Ystj) =1 .

v

With these definitions, a solution of (5.9) is a solution of
(5.2). For, if (@;,x) — v; = 0, 1 < j < n, then by (5.12),

=1 :
(”j’x) - ‘Z:l(pﬁai)(ahx) - (Yj’x) =0

or

j-1 -
B%) = 3. (8,200, — J )0 =0.
Then, by (5.13), .
(Bj’x) = uj'

In application, all can be accomplished by using the
array [B | u] and forming in the same locations the array
[A{v]. If it is desired to vary the vector u after A has
been built, it will be necessary to record the n numbers
J(Y,Y:) and the (n* — n)/2 numbers (@), 1 <i<j,
2 < j < n. The building of the matrix [A | v] from [B|u]
can be visualized best by writing the conjugates of rela-
tions (5.12) [but not of (5.13)]. Then observe that the
first row of [A | v] is formed from the first row of [B {u],
the second row of [A | v] from the second row of [B { u]
and the just established row of [A}v], etc. Each operation
involved can be viewed as tantamount to premultiplica-
tion by an elementary matrix of the first or third kind.
Thus there exists a nonsingular matrix ¢ such that

éBiul=[Alv]
It will be seen that
1

VYY) .

This knowledge can be useful in case the matrix B is
ill-conditioned, that is, has rows or columns so nearly
dependent on each other that rounding or truncation
errors can cause the calculated determinantal value to
deviate markedly from its true value. Now recall that

det(d) = [] (5.14)
i=1

"|det(A)] = 1 to realize that (5.14) can accomplish the

purpose cited. Note also that the sequences {a;}, {v;},
and {r;} can progress together, so that the method can
properly be called an n-step method.

After orthogonalization, it is also possible to find the
solution vector x as A*v.

Example. As a simple illustration of the Kaczmarz method,
we consider the following problem, also discussed in Sections
5.6 and 5.7:

4x, +2x,+ x3=11,
—X1 + 2Xz = 3’
2X| + x2 +4X3 = 16.
The matrix [B} u] is

4211
-1 20 3|
21 416
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. Thefirst row of [A|v] is that of [B]u] divided by /4% + 2% + 1
[ 4 2 1 1
or = =y T =

V21 21 {21 Y2
TOW is

- —0|——=, =y = —=|=[-1,2,0,3
[=1,2,0,3] [le V21 Jar’ le] [ ¥

The normalizing factor is J 12 4 22, so that the second

3
row of [A]v] is [

«/"J" NE

]. Prior to normalizing, the second

] Pnor to normalizing, the
third row is
2.1, 4, 16] - (_1_4_)[;‘_ 2L _11_]
’ NN N TN
+0[—_—{ ——: 0 —_] or [—--2- -1 10 2—6]
NN .3 33’3
Thus for [A}v], we have

4 2 1 11
N RN TR TR 71
o2z s

NN N

2 1 10 26

V105 105

Using ro =11, 1, 1], we find

(-2 L_E__l_]'
n=m1 ( ’21)[J21 V21 V21

37 29 25
=[Eﬁﬁ]
Then
37 29 257} —-2\—-1 2 '
o=l x] - (375
143 229 25
[105 105’ 21]
There results
_ 143 229 257° 19 -2 -1 10 7*
"‘[Twm’ﬁ] “(‘Ji&)[JE’JE’JT@]

=11, 2, 3}
5.6 Jacobi Iterative Method
Consider again the solution of the linear system Bx = u:

bux, + blzxZ + -
b21x1 + bszz + -

+ blnxn = Uy,
+ byuXy =y,
. 5.2

b,,lxl + bnzxz + -+ b”x. = U,.

We now formulate the Jacobi iterative method for

approximating the solution of (5.2). The degree of

5

approximation, however, can normally be improved by
expending more computational effort, that is, by perform-
ing an increased number of iterations.

First, solve for the x;, giving:

Xy =(uy — bypx; ~ by3xy — - — byaxa)/ b1y,
X3 = (g = byyx; — by3xy — *++ — by x)/b,,,
. . (5.15)
Xy = (un - bnlxl - buzxz - .; - bn.n-lxl;—l)/bu'
The system (5.15) can be written more concisely as
( 2 bu":) ~
X = v i=1,2,..,n (516

by ’
Note that the above rearrangement is predicated on
by # 0. Usually, we try to reorder the equations and the
unknowns so that diagonal dominance is obtained, that is,
so that each diagonal element b,; is larger, in absolute
value, than the magnitudes of other entries in row i and
column i. In this connection, also see relations (5.21).
Next, make starting guesses for the x’s and insert these
values into the right-hand sides of (5.15). The, resulting
new approximations for the x’s are resubstituted into the
right-hand sides of (5.15), and the process is repeated.
Hopefully, the x’s thus computed will show little further
change after several such iterations have been made.

Example. Consider the equations
4x, 4+ 2x2 + x3 =11,
—X3 + 2Xz = 3,
2x, + x2 4 4x3 =16,

which have the solution vector x = [l, 2, 3]", that is, X = 1,
X2 =2, and x5 = 3. Rewrite the equations as

1 1 1
Xy == ——"X3 —=

4 2 4

1
X2 =7+ X,

X3,

2 2
—4 1 1
X3 = —2x|—4Xz,

and arbitrarily choose a starting vector x, = [1, 1, 1} in which
the subscript denotes the zeroth stage of iteration. Using a
second subscript to denote the iteration number, the first
iteration gives

1 1 IS SV
x"—4—2>< —4X =2,
—3 1xl——2
xn—2+2 = &y
—a 1 ] 1 1_13
X33 = —2X —4X —4.
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That is, x; = [2, 2, 13/4]". Similarly, the next four iterations
yield '
_[1s 5 5]
2=116°2"2)"

_[1 & 9"
L=l R Rl

_[133 31 393]
Xe=1128"16"128)"

_[519 517 7677
Xs = 13512256256 °

The approximation computed at the fifth iteration is roughly
within 19 of the exact solution. The accuracy could be
improved by performing more iterations, Observe that a
whole new solution vector is computed before it is used in the
next iteration.

In order to establish a criterion for the convergence of
the Jacobi method, regard the rearranged equations (5.15)
" as the system

X=AX +V, 5.17
in which
(o bz b ] KD
by, by by by
A= —|b2 b;; bia], v= b2 ]| (5.18)
bni bn2 e bn,n—l unA
5 B be ) LBl

If the starting vector X, is near the solution vector X,
convergence will be faster. In any event, define

Xe+1 = AX + Y,

in which the subscript k is the iteration number. This

means that
x =A%+ [T +A+ A%+ + A v,
From this, we see that convergence normalty requires that

limA*=0. (5.20)

k- o

From (4.23), it is also a necessary and sufficient condition
that

im[I+A+A2+- +A]=10-A)7"

k-~

Thus, when (5.20) is satisfied, x = lim,_ , X; exists and
x =0+ (I— A)~'v; thatis I — A)x =vor x=AX +v.
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Thus, convergence hinges on the truth of (5.20). From
page 222, (5.20) is true if and only if all eigenvalues of A
are in modulus less than unity. For this to be so, from
(4.25), (4.26), and the subsequent development, we have
the sufficient conditions :

‘Z,lla.-,-lsu<l, 1<j<n,
or .

’illai,-l gp<l, 1<i<n, $ (5.21)
or

i i|ai1|2<u<l.

i=1 j=1

By using (5.18), these sufficiency conditions can also be
translated into an equivalent set of conditions on the
elements of the original coefficient matrix B. For example,
the second condition of (5.21) becomes

”n
Z bl <ibul, 1<isn
=

(5.22)

If, as frequently occurs, matrix B is irreducible (that is,

a matrix of the form [g: ga] , where B, is square and O

is the null matrix, cannot be found by permuting rows
and columns of B), the sufficiency condition can be
relaxed (for example, see Ralston and Wilf [1]) to

: b < lb{i‘,

1
i

Igign (5.23)

M=

with strict inequality holding for at least one value of i.

§7 Gauss-Seidel Iterative Method

The linear system considered is again that of (5.2)
rephrased in the form (5.15) or (5.17). In the iterations,
however, the newly-computed components of the x vector
are always used in the right-hand sides as soon as they are
obtained. This contrasts with the Jacobi method, in which
the new components are not used until all n components
have been found.

Example. The Gauss-Seidel method is applied to the short
example considered under the Jacobi method. The form used is

1mm 1 1
X1=’;""2'x2"2x3.
_3 1
X:—-2+2x1,
4' 1 1
X3y = —2X1—4X2,



¢

Systems of Equations

300

with the understanding that the most recently available x’s
are always used in the right-hand sides. Again x, is chosen as
{1, 1, 1}.. The first iteration gives :

1101 1
xu=z-—§><l—le=2,

_3 1X2—5
x21—2+2 “‘2u

—4 %2 1 5 19
¥1=%73 3%32" %"

That is,

F 5 197

x,—_z,i,? .

Similarly, the next two iterations yield

[29 125 783]'

%= |56 25
_[1033 4095 245417
X3=117024"2048" 8192 | °

Observe that in this example the rate of convergence is much
faster than that in the Jacobi method.

In order to investigate the conditions for the conver-
gence of the Gauss-Seidel method, we first phrase the
iteration in terms of the individual components. Let x;
denote the kth approximation to the ith component of the
solution vector X = [xy,X3, ..., Xa]'. Let [X;0,X205 - s Xno]’
be an arbitrary initial approximation (though, as with the
Jacobi method, if a good estimate is known, it should be
used for efficiency). Let A and v be the same as given
in (5.18), and define

i-1

n
X =jZlaux,- + Y ayxja-g v, (5.24)

J=i+1
for l $i€n and 1 s k. When i= 1, Z_,]-'xl a,'jxik is
interpreted as zero, and when i =1, Y jui41 @iX)5-1 IS
likewise interpreted as zero.

Write A = Ay + Ay where

o 0 --- 0 O
A= a1 - 0 --- 0 0 ,
| Gny G2 an,;—l 0],
[0 a4, A1n
A= 0 0 20
0 0 - 0

Thus A, is a strictly lower-triangular matrix whose sub-
diagonal entries are the elements of A in their natural

positions. A similar description applies to Ap. It is seen
that, if x, = [xg %20 - - -» X',

X; = Ath + A.x.,_l + V.
This can be paraphrased as
x,‘=(l--AL)-1A.x,‘_, +(I—A|)—1v, (5.25)

which is then of the Jacobi form. This means that a neces-
sary and sufficient condition for the convergence of (5.24)
is that the eigenvalues of (I — A;)~!A, be less than unity
in modulus. The eigenvalues of (I — A;) !A, are found
by solving det(( — Ay) “*Ay — AT) =0, or det([I — A, ]!
X [Ag—AT—-ADD =0, or det(Ax— AL+ AA)=0.
Thus the Gauss-Seidel process converges if and only if
the zeros of the determinant of

—-A a4, ays -t oay,
ay A —4 ay - ay,
a312- 0321 —l b a;,

(5.26)

ayd agd aph o =2

are less than one in absolute value: -
Since a; =0, 1 < i< n, while a;; = —by/b,; for i # j,

the determinant of (5.26) has the same zeros as the
determinant of :

byyA by, byz ot by,

by A byd by - by,
byyA b3pA basd -t by, (5.27)
bud buad bk -t bl

It develops that conditions analogous to the first two of
(5.21) prove sufficient to guarantee convergence, namely,

b

Ji

byl . ]
b—”<p<l or Y [+
ii 1

j.=
J#i

Su<l, 1<ign

=1 b
& i

(5.28)

The first of these may be demonstrated as follows. We
have already seen in (4.14) that since

1biil > Z 15yl
i

B is nonsingular. Thus a solution vector x exists such that
x = AX + v, whence

"
X=X+ v,
e
in which a;; = —b;;/b,. Subtracting this from (5.24)
yields
i-1 L]
[xg — x| <J=1|aul X — x4 + Z layllx; k-1 — x5l

J=i+1
(5.29)
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Let e, denote the maximum of the numbers |x, — x| as i
varies. Then

n
[x1x = x4} <Jzz|au| €1 S HE—y < €y

Substituting this in (5.29) yields
[X2x — %3] € 124 €6y +123|a'zj| ey € He—y.

Continuing asindicated gives |x; — x,| < pe-, 1 <i<n
This means, of course, that |x; — x;| < u'e,, whence,
since 0 < pu < 1, limy, o, X = X;.

More interesting still than the sufficiency conditions of
(5.28) is the fact that convergence always takes place if
the matrix B of (5.3) is positive definite. To demonstrate
this, let B=D + L + L' where D=D is the matrix
diag(b, 1,022, . . -» b.a), and Lis the strictly lower-triangular
matrix formed from the elements of B below the diagonal.
Starting from (5.25), it is seen that a necessary and
sufficient condition for convergence is that all eigenvalues
of (I—A;)"'Ag be of modulus less than unity. But
Ap=-=D"'LandAy = —D7'L*. Thus(I— A " 'Ax =
—(D + L) !L*. The eigenvalues of this matrix, except for
sign, are those of (D + L)~ 'L*, which we consider instead.
Let 4, be an eigenvalue of this matrix, and let w; be the
corresponding eigenvector. Since B is positive definite,

(w;,Bw)) = (w;,)Dw)) + (w,Lw;) + (w;,L*w;) > 0. (5.30)

But (D + L) !L*w; = i,w;,, so that L*w,=1Dw;+
ALw;; then

(woL*w) = A[(w,Dw) + (w,Lw)]. (5.3

Taking the conjugate of both sides, (L*w,,w,) = (w,Lw,)
= I;[(DW;,W() + (L'bwi)]; or

(Wi»LWi) = 1,[(w,Dw)) + (w,,L*w))].
Combining (5.31) and (5.32) gives

(5.32)

(- lixt)(wi,L*Wt) =4+ )‘iIi)(wiaDwz)y

(1= Ad)woLw) = (4; + 21)(w,Dw)).

Substitutingin (1 — 4,2)[(w;,Dw)) + (w,Lw)) + (w,L*w,)]
yields

(1 + A)(1 + 1) (w,,Dw).

Since D is itself positive definite, this expression is positive,
Then, by (5.30), 1 —44)>0o0r |4 <1

Thus, sufficiency has been shown. It is also possible to
prove that if the matrix B is Hermitian and all diagonal
elements are positive, then convergence requires that B be
positive definite.

The solution of systems of equations by iterative pro-
cedures such as the Jacobi and Gauss-Seidel methods is
sometimes termed relaxation (the errors in the initial
estimate of the solution vector are decreased or relaxed as
calculation continues). The Gauss-Seidel and related
methods are used extensively in the solution of large sys-
tems of linear equations, generated as the result of the
finite-difference approximation of partial differential
equations (see Chapter 7).



