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A Vitorian Age Proof of the Four ColorTheoremI. Cahitemail:iahit�gmail.omAbstratIn this paper we have investigated some old issues onerning fourolor map problem. We have given a general method for onstrutingounter-examples to Kempe's proof of the four olor theorem and thenshow that all ounterexamples an be rule out by re-onstruting speial
2-olored two paths deomposition in the form of a double-spiral hain ofthe maximal planar graph.In the seond part of the paper we have given an algorithmi proof of thefour olor theorem whih is based only on the oloring faes (regions) of aubi planar maps. Our algorithmi proof has been given in three steps.The �rst two steps are the maximal mono-hromati and then maximaldihromati oloring of the faes in suh a way that the resulting unolored(white) regions of the inomplete two-olored map indue no odd-ylesso that in the (�nal) third step four oloring of the map has been obtainedalmost trivially.1 IntrodutionFour olor map oloring problem is to olor regions of a (normal) map M with atmost four olors so that neighbor regions (ountries) would have reeive di�erentolors. This simple problem posed and onjetured to be true for all maps byGuthrie in 1852 [1℄,[32℄. Its orret proof was �rst given in 1976 and repeatedseveral times by the same method by the help of a omputer [2℄-[5℄. The authorhas given two non-omputer proofs of the four olor theorem based on spiralhains in planar graphs [6℄,[7℄,[8℄.In this paper we will give another one based on step-wise mono-hromatioloring, two oloring and then four oloring of any given normal map M , i.e.,four oloring of the faes of any ubi planar graph. Therefore our proof suitswith the mathematis of the Vitorian age [9℄ in whih the four olor problemarose. In order to make a smooth transition to the proof we will re-investigatepartiularly ounter-examples ("bad" examples) to Kempe's proof. MihaelRosellini in his undergraduate projet summaries existing proofs together withthe historial initial e�orts. For his study of an ounter-example he has hosenthe paper of Holroyd and Miller entitled "The example that Heawood should1
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have given" [10℄ whih is atually same example given by Errera [31℄ but drawnin the plane di�erently [11℄. A lose look to that example reveals a propertywhih leads to a general method for onstruting a lass of ounter-examples. Onthe otherhand we have given a method to re-olor verties of the "bad" maximalgraph around the undeided degree �ve vertex for whih Kempe's argument mayfail, so that under the resulting four oloring the graph is deomposed into edgedisjoint two paths. Furthermore the shape of the paths as seen from the Figure1 is a double-spiral hain entered at the undeided vertex. Of ourse any fouroloring of G indues edge disjoint two bipartite graphs but not neessarilyonneted and in the form of a double-spiral. We have also suggest surveys onthe early developments of the four olor problem by Saaty [12℄ and Mithem[13℄.The notion of equitable olorability was introdued by Meyer [17℄. Thatis the sizes of olor lasses di�er by at most one. Similarly equitable labelingof graphs introdued by the author in 1990 [18℄. However, an earlier work ofHajnal and Szemérdi [19℄ showed that a graph G with degree ∆(G) is equitably
k-olorable if k ≥ ∆(G)+1. In 1973, Meyer formulated the following onjeture:Conjeture 1 (Equitable Coloring Conjeture (ECC) [17℄). For any on-neted graph G, other than a omplete graph or an odd yle, χ=(G) ≤ ∆(G).The Equitable k-Coloring Conjeture holds for some lasses of graphs, e.g.,outerplanar graphs with ∆ ≥ 3 [20℄ and planar graphs with ∆ ≥ 13 [21℄. How-ever the four olorings given for bad-examples in Figure 1 are all equitable
4-oloring.We have the following laim:Claim. Let G be a maximal planar graph. Then there exits 4-oloring of Gfor whih at least the sizes of three olor lasses di�er by at most one.2 Bad Examples for Kempe's ArgumentAfter studying all known bad-examples to Kempe's argument one an reah tothe onlusion that it is ourred only for spei� planar graphs with spei�inomplete four-oloring. Gethner et. al. [22℄,[23℄ have investigated Kempe's�awed proof of the Four Color Theorem from a omputational and historialpoint of view. Kempe's "proof" gives rise to an algorithmi method of oloringplanar graphs that sometimes yields a proper vertex oloring requiring four orfewer olors. They also investigate a reursive version of Kempe's method anda modi�ed version based on the work of I. Kittell [30℄.Let G be an maximal planar graph with n verties.Let T be the triangulationof G. Let G1 ∈ {P1, C1} and G2 ∈ {P2, C2} be two vertex disjoint paths or y-les suh that |G1| ≈ |G2| and |G1|+|G2| = n if under suh a deomposition of Gevery triangle ti has exatly one edge either from G1 or G2 then we say triangu-2
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HeawoodKittellFigure 1: All known ounterexamples to Kempe's "proof" with double-spiralhain deompositions.
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(d) (e)Figure 2: Step-by-step resolution of an impasse in the Errera's graph.3



lation T as β-triangulation. If |C1| ≡ |C2| ≡ 0(mod2) then 4-oloring of G easilyan be obtained. For example in Figure 1 for Frith's graph |P1| = 3, |P2| = 4,for So�er's graph |P1| = 4, |P2| = 3, for Errera's graph |P1| = 8, |P2| = 7, forPoussin's graph |P1| = 7, |P2| = 6, for Kittell's graph |P1| = 10, |P2| = 11 and �-nally for Heawood's graph |P ∗

1 | = 12, |P ∗

2 | = 11, where P ∗

1 , P ∗

2 are ayli graphs.We hoose the four olors as {Red,Blue,Yellow,Green} or for another reason
{Brown,Green,darkBlue, lightBlue} or {1, 2, 3, 4}. Moreover white oloredvertex or region in a map means awaiting olor from the four-olor set.One of the important property of an "real" bad-example to Kempe's ar-gument is that ourrene of Kempe tangling must be independent from theorder of the seletion of Kempe-hains. For example Errera's bad example(�rst inomplete 4-oloring of Figure 2) satis�es this ondition. Now on-sider C5,in = {B, G, R, G, Y } that surrounds undeided white vertex. Con-sider also two disjoint 2-olored yles of length six (shown dashed lines),i.e.,
C6,in = {R, G, R, G, R, G} and C6,out = {B, Y, B, Y, B, Y } whih forms an tri-angulated ring [24℄. After ylially shifting the olors in C6,in, insert the Red"joker" olor instead of Blue vertex in C5,in = {B, G, R, G, Y }. Then the threeKempe hain swithings; Ch(R, Y, R, Y ), Ch(R, B) and Ch(R, Y, R, Y, R, Y, R)(see Figure 2) resolves the impasse and a double spiral hain results [25℄.2.1 Constrution of a lass of bad-examplesA triangulated ring is a 2-onneted planar graph Gr with two faes Fi and Fowhose faial walks are the (indued) yles Ci and Co respetively suh that:(a) V (Ci) ∪ V (Co) = V (G) and V (Ci) ∩ V (Co) = φ where indies i and o arebeing used to denote the inner and outer yles (faes)of the graph and (b) everyfae other than Fi and Fo is a triangle. We further assume that all trianglesin Gr are of type β-triangle, that is exatly one edge of the triangle belongs Cior Co. Sine we are interested in small size "bad-example" graphs we onsideronly |Ci| = |Co| = 4, 6. Let us give a simple lemma �rst.Lemma 1. A triangulated ring Gr with a β-triangulation and with |Ci| =
|Co| ≡ 0(mod2) an be 4-olored suh that Ci and Co olored disjoint 2-olorlasses.Proof. Sine the inner and outer yles are of even length; olor inner yle,say with blue and red and outer yle with green and yellow. The β-triangulationof Gr prevents any olor on�its in the four oloring.Now we an onstrut a maximal planar graph G from Gr as follows: (i)Plae an edge ei inside of the inner fae Fi and plae also an edge eo inside ofthe in�nity (�nite if the map embedded on sphere) outer-fae Fo. (ii) Make amaximal planar graph G by joining the end verties of ei with the verties of Fiand by joining the end verties of eo with the verties of Fo suh that resultingtriangulation is a β-triangulation and eo is an outer-edge of G. We say inner-yle Ci,in is a handu�s for the inner-edge ei. Similarly we say outer-yle
Ci,out is a handu�s for the outer-edge eo. The reason of this terminology willbe learer when we extrat bad-examples for Kempe's argument from G. We4



will be interested in the following four oloring of G: Color verties of Ci,in and
eo by R and B olors and olor verties of Ci,out and ei by Y and G olors.This four oloring of G is an proper oloring sine under the yle and edgedeomposition, the triangulation is a β-triangulation. In ase of yles are oflength six, let C6,in = {u1, u2, ..., u6}, eo = {u7, u8} and C6,out = {v1, v2, ..., v6},
ei = {v7, v8}. Let us assume that under the β-triangulation of G we also havetwo speial Kempe-hains as follow:(i) (Y, R)-hain ⇒ ch(v1, u2, v7, u6, v5, u7)(ii) (Y, B)-hain ⇒ ch(v1, u1, v7, u3, v5, u8)Now we are ready to onstrut the twin-bad-example graphs for Kempe's argu-ment.(a) Twin-graph G1. (Trouble in inner-fae). Delete any two edges, otherthan the edges of C6,in and ei, of β-triangulation bounded by C6,in and ei suhthat the resulting new fae F5,in ontains the edge ei in its boundary yle oflength 5. For example we have deleted edges (v7u3) and (v8u3) from G andobtain a new yle (fae) C5,in = (v7, u2, u3, u4, v8). Now we laim that underthe existing four oloring of G if we plae a new vertex vx inside of fae F5,in andjoin all verties of C5,in to vertex vx then the resulting inomplete four oloringof the modi�ed planar graph G1 is an bad-example to Kempe's argument. Thatis the four olors appear in C5,in = {v7, v8, u4, u3, u2}, (i.e., see Figure 3(b):
(Y, G, R, B, R))annot be redued to three olors by any Kempe-hain swith-ing. One reason of this impasse is that (Y, G) (resp. (R, B)) end-verties ol-ored edge ei (resp. eo) annot be extended due to (R, B) (resp. (Y, G) oloredhandu�s yle. Moreover (G, B)-hain ch(v8, u5, u8, v2, u3) and (B, Y )-hain
ch(u3, v3, u8, v1, u1, v7) would prevent to redue the number of olors to threeon the verties of C5,in. Hene inomplete four oloring of the maximal planargraph G1 with 17 verties shown in Figure 3(b) is an bad-example to Kempe'sargument.Note that we have the same deomposition as above if we onsider;
(G, R) yle C6,in = {v6, u6, v8, u4, v4, u7} and e = {u2v2} and
(Y, B) yle C6,in = {v1, u1, v7, u3, v3, u8} and e = {u5v5}.(b) Twin-graph G2. (Trouble in outer-fae). The seond bad-examplegraph G2 an be obtained from G by deleting edges (v1u7) and (v1u8). Outer-yle of G2 is C5,out = (u7, v6, v1, v2, u8) that has been olored by R, G, Y, G, B(see Figure 3(b)). Now if we plae the new vertex vx in the outer-fae of G2 andjoin to the verties of C5,out then vx annot be olored by the use of Kempe'sargument.This due to the (Y, R)- and (Y, B)-hains mentioned in (i) and (ii) before. More-over swithing of olors of the end-verties of the edges (v6u1) or (v2u2) wouldnot redue the number of olors on C5,out. Hene G2 is an bad-example graphto Kempe's argument.In Figure 4(a) and (b) we have shown another twins bad-example graphs G1and G2 with 13 verties where the handu�s yles C4,in and C4,out are of lengthfour. Moreover omparing the known-bad-example graphs shown in Figure 15
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C5,in={R,B,R,G,Y}

C5,out={R,G,Y,G,B}

(a) (b)Figure 3: Four oloring of an generator maximal planar graph with β-triangulation: (a) and (b) twin bad-example graphs for the Kempe's argument.the graphs G1 and G2 are the smallest bad-examples in whih ourrene of animpasse is not depend on the order of Kempe hain swithing.In Figure 4()we also have illustrated double-spiral hain four oloring of the bad-example ofFigure 4(b). It is not di�ult to show that this is possible for all bad-examplegraphs [24℄.In the next setion we propose a new proof for the four olor theorem withoutusing Kempe-hains based on step-by-step oloring of the faes of ubi planarmaps.3 A New Proof of the Four Color Map TheoremA more ourageous title of this setion would be "How to reate a four oloredworld in three steps?" It is well-known and without doubt that four olor the-orem is true. What are the reasons for a lengthy existing proofs by the useof a omputer? One answer would be going to the long way whih has beenfored by the false Kempe's "proof", see for example Birkho�'s reduibility ofdouble C5 (atually overlapped 4 yles of length 5),e.g., Birkho�'s diamond6



C5,in={B,R,B,G,Y}C5,out={B,Y,G,Y,R}
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(c)Figure 4: (a),(b)Four oloring of twin bad-example maximal planar graphs with
2C4 ∪ {ein} ∪ {eout} and () double-spiral hain oloring of (b)
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(a)

(b)Figure 5: Bad on�gurations in a maximal two olored map that require �veolors: (a) with unwanted spot (this was the ase of a bad-example to Kempe'sargument; see 2-olor handu�s yle C6), (b) without unwanted spot.
X

X X

(a)

(b)Figure 6: Good and bad assignments of low-land green-olor regions in a two-olored map. 8



[14℄ while yle of length �ve C5 is not reduible. Another answer would beover looking di�ulties of the planar three olorability problem in the light ofGrotzsh and Heawood's theorems [15℄,[16℄. In this setion we will be giving anew proof of the four olor map theorem in whih we have impliitly by passthe three-oloring problem of planar graphs within the onstrutive proof.In fat our algorithmi proof implies the following theorem without relyingon the four olor theorem [26℄,[27℄:Theorem 1. Every planar graph an be deomposed into the edge disjointunion of two bipartite graphs.Let us denote by M an normal map with n + 1 regions, where (n + 1)thregion rn+1 is the outer-region of M. M an be equivalently represented by aubi planar graph Gc(M) = (Vc, Ec), where Vc is the set of verties assoiatedwith the rossing of pairwise three neighbor regions, and Ec is the set of edgesin the form of Jordan urve assoiate with the boarder of two neighbor regionsbetween two verties. In order to make the map-oloring algorithm more visibleand meaningful let us de�ne the four-olor set as C = {B, G, dB, lB}, where- B denotes brown olor and when it is assigned on to the white bakgroundolor the orresponding region beomes a "high-land".- G denotes green olor and when it is assigned on to the white bakgroundolor the orresponding region beomes a "low-land".- dB denotes dark-blue olor and when it is assigned on to the white bakgroundolor the orresponding region beomes a "deap sea".- lB denotes light-blue olor and when it is assigned on to the white bakgroundolor the orresponding region beomes a "shallow-sea".Initially the given map olored all by bakground olor white and at the endof the oloring algorithm (three steps) it will be olored by the olors C andno white olor remains on the map. Clearly we will show that this is alwayspossible for any map M.By M(B) we denote a map in whih maximal number of its regions oloredby B (mono-hromati oloring) where the term maximal means that any ad-ditional brown region (high-land) results olor on�it and all the remainingregions are bakground-olor white. Similarly by M(B, G) we denote a mapobtained from M(B) in whih maximal number of its white regions olored by
G. Hene M(B, G) is an maximal two-oloring of M .De�nition 1. In a mono-hromati oloring of map M(B) if an vertex vis not inident to any brown olored region then v is alled unwanted-spot orsimply a spot . Furthermore if the map M(B) is spot-free then the map M(B)is alled lean map.De�nition 2. Spiraling of a map M is a proess of ordering and labeling thefaes (regions), starting from the outer-region rn+1 and seleting always outernext region ri neighbor to the previous region ri+1 in the form of a spiral.Note that depending on the adjaeny of the regions of the map M we may9



(a) (b)Figure 7: Spiraling of the Haken and Appel's and Martin Gardner's maps.have several spirals but the ordering of the regions is uniquely determined bythe initial region and next one with the diretion seleted e.g., lokwise orounter lokwise. Similar de�nition has been given for maximal and ubiplanar graphs in [6℄,[7℄. For an illustration spiraling see the nested three spiralsshown in blue, red and green olors in Figure 7.3.1 The Map Coloring Algorithm.Main feature of the oloring algorithm is the use of eah of the four olors one-by-one and preparing the onditions satis�ed for the next step.Step 1. Maximal mono-hromati oloring of high-lands map M(B).Let S = {rn+1, rn, rn−1, ..., r1} be the spiral ordering of the faes of map M .Color outer-fae rn+1 of M with B. Along the spiral S olor next white region
ri ∈ S with B by the following rule:(i) All the �rst neighborhood of the region ri remain in white (unolored).(ii) If any white region rj , j > i is olored, that is c(rj) = B then a olor-on�itsarises.(iii) At least one of the seond neighborhood region of ri would be olored by
B.Using (i)-(iii) and spiraling S the maximal mono-hromati set of k regions anbe obtained. Let us all the map M after the oloring as M(B). Let us alsodenote the spots of M(B) with a set P = {p1, p2, p3, ..., pk} where k < n. Thatis P is the set of triply neighbor white regions of the map M(B) where some ofthe white regions may be overlapped.The output of the step 1 is simply maximal disjoint of highland islands all ol-ored in brown.We have also the following simple property of M(B).10



Lemma 2. The spots of the triply neighbor white regions of the map M(B)annot indues a yle.Proof. Let us assume that a region r olored by B has been surrounded by anyle of spot verties. Hene regions in the seond neighborhood must be alsoall white. But (iii) we have olored at least one of the region in the seondneighborhood in B and that breaks the yle of the spots into a path.As it has been seen that Step 1 is rather straight forward and map M(B) aneasily be obtained for any M . Assuming the maximal mono-hromati olor-ing of M(B) as a base, it is not suh an easy task to obtain dihromati map
M(B, G). In the next step we will give the details and proofs that startingfrom mono-hromati M(B) it possible to two-oloring of M(B, G) with a setof properties that satis�es four olorability of the whole map. That is we willshow that by assigning olor green (olor for low-land) to the some of the whiteregions of M(B) we obtain maximal dihromati oloring of M(B, G) withoutany spots, without any even (B, G)-ring and without odd any W -ring (white-rings in M(B, G)).Let us remind the role of two-olored even yles (handu�s) in onstrutingnew ounter-examples to Kempe's argument in Setion 2.In Figure 5 we have demonstrated one of reason of an bad assignment of olorgreen in M(B). That is even-ring R(B, G) would prevent to omplete oloringof white regions with four olors. Another reason of an bad assignment of olorgreen is that, not leaving any room for the other olors to vanish the white-spots(see Figure 6 (a) and (b)).Lemma 3. Mono-hromati (green) spiral-hain oloring of the white re-gions of the map M(B) results in a spot-free map M(B, G).Proof.If a spot-vertex remain in M(B, G) it would be one of the bad on�gura-tions illustrated in Figures 5 and 6 (b). But this bad on�gurations an onlyour when green olor assigned without onsidering the maximum number ofspots of the white region. However this has been proteted by Step 2 (i) in thealgorithm.Lemma 4. Two oloring of the map M(B, G) an be extended to four olor-ing i� white-regions of M(B, G) indued a (not neessarily onneted) bipartitesubgraph.Proof. Sine the white regions in M(B, G) indue a bipartite graphs they anbe olored with two olors (dB, lB). Otherwise the maximal two-olored map
M(B, G) has an odd yle formed by all white regions and then we need the�fth olor.Theorem 2. The map M(B, G) obtained by the Map-Coloring-Algorithmin Step 2 an be extended to a four oloring of M .Proof. Proof follows from Lemmas 2,3,4 and 5.De�nition 3. Let ri, rj , rk ∈ M, i 6= j 6= k. If va, vb ∈ ri, rj and vc, vd ∈
rj , rk, va 6= vb 6= vc 6= vd then the region rj is alled tunnel onneting ri and
rk. 11



The next lemma is related with the two-olored even-yles in M(B, G).Lemma 5. Let M(B, G) be a two olorable ubi planar map without tunnelregions. Let M(B, G) be surrounded by two rings R1 and R2 where R1 is anodd-ring within the �rst neighborhood of M(B, G) and R2 is an even-ring withinthe seond neighborhood of M(B, G). If M(B, G) and R2(B, G) have been twoolored by B and G then the map M = R1 ∪ R2(B, G) ∪ M(B, G) annot beextended to a four oloring.Step 2. Maximal dihromati oloring of high-low-lands map M(B, G).We use the same spiraling S of the map M(B). While assigning olor green Gto a white region onsider the following two onditions:(i) While assigning green olor to white regions give priority to the white-regionwhih has maximum number of spot verties in M(B);(ii) Do not reate any (B, G)-ring R(B, G) whih ontains an inside odd white-ring R(W ).Lemma 6. The map M(B, G) obtained by the map oloring algorithm step1 and 2 has no odd-white yles.Proof. We have eliminated all spot verties in M(B, G) so the length of anyodd-white yle would be ≥ 5. Let us assume that there exists a white-ring(yle) R5(W ) in M(B, G) of length 5. Let us denote by Min(B, G) the innertwo olored map of R5(W ). Let Rout be denote the outer ring that surrounds
R5(W ). In ase one of the region ri is an tunnel region then there would bea (B, G)-hain breaking the white-ring R5(W ). Hene the outer ring has �veregions whih olored byG, B, G, B, W . Then the white region must have a spot-vertex ommon with R5(W ). A ontradition. Then let us assume that Rout hassix regions (even number). In this ase Rout should be olored alternatingly by
B and G. But by Step 2 (ii) in the algorithm we don't let any even (B, G)-ringaround the odd-white ring.Step 3. Four oloring of M(B, G, lB, dB).Sine maximal dihromati map M(B, G) has only even white-rings and ayliwhite regions, i.e., forest of disjoint trees and paths we an easily olor themwith light-blue lB and dark-blue dB.That is at the end of Step 3 the initial all-white normal map M transformedinto four olored map of M(B, G, lB, dB) with the regions of high-lands, low-lands, deep-seas and shallow-seas.From Theorem 2 we re-state the famous four olor map theorem.Theorem 3. All ubi planar maps are 4-olorable.

12



3.2 Two well-known mapsThe map oloring algorithm has been illustrated by the two well-known maps.Figure aptions give the details.

13



Figure 8: The Haken and Appel's map. This map has been taken from Ed PeggJr's mathpuzzle.om/4De2001.htm. Haken and Appel needed a omputer to
4-olor the following hardest-ase map, whih has been presented in a slightlydi�erent form. In this appendix we will explain step-by-step our algorithmiproof of the four olor theorem on this map.

Figure 9: Maximal mono-hromati oloring of high-land (brown) regions. Notethat we start oloring from the outer region and must be all adjaent to white(not olored) regions. Intersetion of three adjaent regions have been shownwith small irles (unwanted spots) and must be vanished as shown in Figure10 in the maximal 2-oloring of the map.14



Figure 10: Maximal two oloring of high-land (brown) and low-land (green)regions. Green oloring starts from the upper white region (an be started anywhite region adjaent to outer region). Trae of green regions form a spiralingin the lokwise diretion and at eah step at least one "irle" of Figure 9 isvanished by the assignment of the green olor to a white region.By red-dashedurves we have shown �ve even white-rings (even-yles) around the brown-green(high-lowland)islands. The rest of white regions indue an ayli graph

Figure 11: Four oloring of Appel and Haken's map; two oloring of deap sea(dark blue) and shallow sea (light blue) regions of the two olored map of Figure10. Here two olors is enough for the white regions sine the indued dual-graphis bipartite. 15



(a) (b)

(c) (d)Figure 12: Martin Gardner's April Fool's joke (1975). (a) The "ounter-example" map, (b) Brown highland islands, () Brown-green high-low islandsand (d) The four olored map. Note that (i) eah olor spiraling in the mapand (ii) white regions in () indued disjoint union of ayli subgraphs. Wagonhas given four oloring of the April's Fool's map by using Kempe's originalalgorithm without faing any impasse [28℄,[29℄.
16



4 Conluding remarksWe extrat the following from the �rst page of Appel and Haken's paper [3℄:The �rst published attempt to prove the Four Color Theorem was made by A.B.Kempe in 1879. Kempe proved that the problem an be restrited to the onsid-eration of "normal planar maps" in whih all faes are simply onneted polygons,preisely three of whih meet at eah vertex. For suh maps he derived from Euler'sformula the equation
4p2 + 3p3 + 2p4 + p5 =

∑kmax

k=7
(k − 6)pk + 12where pi is the number of polygons with preisely i neighbors and kmax is largestvalue of i whih ours in the map. This equation immediately implies that everymaximal planar map ontains polygons with fewer then six neighbors. In order toprove the Four Color Theorem by indution on the number p of polygons in the map

(p =
∑

pi), Kempe assumed that every normal map with p ≤ r is four olorableand onsidered a normal planar map Mr+1 with r + 1 polygons. He distinguishedthe four ases that Mr+1 ontained a polygon P2 with two neighbors, or a triangle
P3 or a quadrilateral P4, or a pentagon; at least one of these must apply by theequation.This beautiful Vitorian Age dedution works for Pi, i = 2, 3, 4 and unfortu-nately fails for i = 5. I think no mathematiian of that period would be able toguess the possible length of a proof in future based on reduibility.In this paper, by hoosing diret proof, that is the opposite diretion of theabove, we have given an algorithmi proof for the Four Color Theorem whihis based on an oloring algorithm and avoiding three-olorability in a maximaltwo-olorable map. The last word about the proofs given in [6℄,[7℄,[8℄ and in-luding this one that uses spiral hains in the oloring algorithm. Simply enablean e�ient oloring algorithm and protet us to fall in a situation similar toKempe-tangling.Again Appel and Haken argue strongly that [12℄,[13℄:...it is very unlikely that one ould use their proof tehnique without the veryimportant aid of a omputer to show that a large number of large on�gurationsare reduible. Of ourse, this does not rule out the possibility of some bright youngperson devising a ompletely new tehnique that would give a relatively short proofof the theorem.This paper does not prove the truth of the �rst sentene but it does provethat the seond sentene is wrong, not only just beause of the length of theproof.
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