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I.  INTRODUCTION

In a civilization, human labor of one type
is exchanged for  human labor of another type.  For
example, when one eats at a restaurant, one
exchanges money earned from one’s own labor for
the labor of people who cook, raise animals and
vegetables, deliver goods, etc..   This exchange is
made possible by a salary, which establishes a
value for labor of different types.  There are many
ways to represent a value;  however, in virtually all
number systems, symbols from some finite set are
combined to represent potentially large values.
The decimal number system, in which there are ten
symbols, has found wide use;  many people believe
this is due to the ten fingers of the human species.
A similar situation exists in computers.  Since
conventional logic elements easily realize two
values, computers use binary number systems.  The
prospect of multiple-valued logic suggests the need
to understand number systems with more than two
digits.

In spite of the recent use of binary
systems, there is evidence that suggests the
Chinese used the binary number system 5000 years
ago, Newman [15, p. 2422].

An interesting discovery was made at the
site of Mohenjo-Daro, an ancient city near the
Indus River (Morrison and Morrison [14]).
Irregularly shaped stones were found, each twice
the weight of another.  Archeologists believe that
these were used by merchants in the Harappan
culture for an equal-arm balance 4000 years ago.
For some object on one side of a balance in
equilibrium, the stones on the other side represent
the binary value of the object’s weight.  Fig. 1
below shows an example of how such a system
might work.
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Weight = 23 + 21 + 20 = 11

Figure 1.  Binary balance scale.
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The formation of this system is simple.
First, two small stones are found, each of identical
weight; a balance scale is used to determine that
their weights are identical.  Interestingly, the two
equal-weight stones found near the Indus River,
each weighed slightly less than an ounce.  Then,
using a balance scale again, a third stone is found
equal to the weight of the two equal-weight stones.
These three stones are then used to find a fourth,
which has weight identical to their combined
weight, etc..  Thus, the stones’ weight occurs in the
proportion - 1, 1, 2, 4, 8, 16, ...  .

III.  COMPARISON OF NUMBER SYSTEMS

A.  STANDARD BINARY NUMBER SYSTEM

In the standard binary number system, a
number N has a value given as

N = an-12
n-1 + ... + a22

2 + a12
1 + a02

0,

where ai ∈ {0,1}.  Fig. 2 below shows an example
of the 4-bit standard binary number system.  The
table shows all binary 4-tuples and their
corresponding value.  The histogram plots the
number of representations for each numerical
value.  From this, it can be seen that there is
exactly one 4-bit representative for each of the
non-zero integers, 0, 1, 2,  ...  , 15.

a 3 a 2 a 1 a 0 N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 1 0
1 0 1 1 1 1
1 1 0 0 1 2
1 1 0 1 1 3
1 1 1 0 1 4
1 1 1 1 1 515-15

Number of
     representatives

Value

N = a323+a222+a121+a020, where ai εε  {0,1}.

Figure 2.  The 4-Bit Standard Number System.

B.  NEGA-BINARY NUMBER SYSTEM

In the nega-binary number system, both
positive and negative integers are represented.  In
this system, the number representation is the same
as the binary number system with the base 2
replaced by -2.  That is,

N = an-1(-2)n-1 + ... + a2(-2)2 + a1(-2)1 + a0(-2)0.

Fig. 3 shows the 4-bit nega-binary number system.
As with the standard binary number system, every
number has a unique representative 4-tuple.  It is
interesting that there are twice as many negative
integers as there are positive integers.  This
statement is true of general nega-binary number
systems, when the number of bits is even.  If the
number of bits is odd, the number of positive
integers is twice the number of negative integers
plus 1.  The disparity between the number of
negative numbers and positive numbers is a
significant disadvantage.

Number of
     representatives

a 3 a 2 a 1 a 0 N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 -2
0 0 1 1 -1
0 1 0 0 4
0 1 0 1 5
0 1 1 0 2
0 1 1 1 3
1 0 0 0 -8
1 0 0 1 -7
1 0 1 0 -1 0
1 0 1 1 -9
1 1 0 0 -4
1 1 0 1 -3
1 1 1 0 -6
1 1 1 1 -515-15

Value

N = a3(-2)3+a2(-2)2+a1(-2)1+a0(-2)0, where
ai εε  {0,1}.

Figure 3.  The 4-Bit Nega-Binary Number System.

B.  TWO’S COMPLEMENT NUMBER
SYSTEM

Like the nega-binary number system, the
two’s complement system represents both positive
and negative integers.  However, in the latter, the
number of positive and negative numbers are
approximately the same.  Here,

N = an-1(-2)n-1 + ... + a22
2 + a12

1 + a02
0.

Fig. 4 below shows the 4-bit two’s complement

a 3 a 2 a 1 a 0 N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 -8
1 0 0 1 -7
1 0 1 0 -6
1 0 1 1 -5
1 1 0 0 -4
1 1 0 1 -3
1 1 1 0 -2
1 1 1 1 -115-15

Value

N = a3(-2)3+a222+a121+a020, where ai εε
{0,1}.

Number of
     representatives

Figure 4.  The 4-Bit Two’s Complement Number
System.
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number system.  As with all number systems
shown so far, all representations are unique.  In
this system, there is one more negative number
than positive number.

D.  ONE’S COMPLEMENT NUMBER
SYSTEM

The one’s complement number system is
the first example of a redundant number system.
Specifically, 0 has two representatives, usually
called 0 and -0.  With any number represented as

N = an-1(-2)n-1 + ... + a22
2 + a12

1 + a02
0 + an-1,

0 is  00...0 and -0 is 11...1.  Fig. 5 below shows the
4-bit one’s complement number system.  The two
representatives of 0 are shown as a line of length 2
at value 0.

a 3 a 2 a 1 a 0 N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 -7
1 0 0 1 -6
1 0 1 0 -5
1 0 1 1 -4
1 1 0 0 -3
1 1 0 1 -2
1 1 1 0 -1
1 1 1 1  015-15

Value

N = a3(-2)3+a222+a121+a020 +a3
 , where ai

εε  {0,1}.

Number of
     representatives

Figure 5.  The 4-Bit One’s Complement Number
System.

E.  FIBONACCI NUMBER SYSTEM

The Fibonacci number system is the
second example of a redundant number system.  In
such a number system, numbers have the value

N = an-1Fn+1 + ... + a2 F4 + a1 F3 + a0 F2,

where Fi = Fi-1 + Fi-2  and F2 = F1 = 1.  That is,
instead of powers of 2 or -2, Fibonacci numbers
are used as the base.  In such a number system,
there are many redundant representatives.  Fig. 6
shows that, for the 4-bit Fibonacci number system,
there are four redundant representatives.

a 3 a 2 a 1 a 0 N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 3
0 1 0 1 4
0 1 1 0 5
0 1 1 1 6
1 0 0 0 5
1 0 0 1 6
1 0 1 0 7
1 0 1 1 8
1 1 0 0 8
1 1 0 1 9
1 1 1 0 1 0
1 1 1 1 1 115-15

Value

N = a3F5 + a2F4 + a1F3 + a0F2, where ai εε
{0,1} and Fi is the ith Fibonacci
number.  Fi = Fi-1 + Fi-2  &  F1 = F2 = 1.
N = a35 + a23 + a12 + a0

.

Number of
     representatives

Figure 6.  The 4-Bit Fibonacci Number System.

F.  FIBONACCI NUMBER SYSTEM WITH
NO ADJACENT 1’S

Zeckendorf [16] showed that if one
retains only those binary patterns in the Fibonacci
number system without pairs of 1’s, then, each
integer is uniquely represented.  Fig. 7 shows this.
In the table of Fig. 7, 4-tuples with at least one pair
of 1’s are overlayed with a line.   Removing all 4-
bit patterns with pairs of 1’s, yields a number
system in which 0, 1, ... , and 7 are uniquely
represented.

a 3 a 2 a 1 a 0 N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 3
0 1 0 1 4
0 1 1 0 5
0 1 1 1 6
1 0 0 0 5
1 0 0 1 6
1 0 1 0 7
1 0 1 1 8
1 1 0 0 8
1 1 0 1 9
1 1 1 0 1 0
1 1 1 1 1 115-15

Value

N = a3F5 + a2F4 + a1F3 + a0F2, where ai εε
{0,1} and Fi is the ith Fibonacci
number.  Fi = Fi-1 + Fi-2   &  F1 = F2 = 1.
N = a35 + a23 + a12 + a0

.

Number of
     representatives

Figure 7.  The 4-Bit Fibonacci Number System in
Which No Pairs of Adjacent 1’s Exist.

The absence of pairs of adjacent 1’s
makes this number system useful in systems that
retrieve and store data serially.  For example,
Davies [6] describes a CD-ROM system in which
codewords without pairs of 1’s are used.  Kautz
[12] proposed codes that could be transmitted
without an accompanying clock, requiring there be
enough 0 to 1 and 1 to 0 transitions to delineate
where bits begin and end.



14-4

G.  FIBONACCI NUMBER SYSTEM WITH
THE MOST 1’S

Brown [1] showed that if one retains only
those binary patterns in the Fibonacci number
system with the most 1’s, then, in the resulting
system, each integer is uniquely represented.
Stated differently, each representation with the
most number of 1’s is unique.    Fig. 8 shows this
for 4-bit patterns.  In this case, the numbers 0, 1, ...
, and 11 are uniquely represented.

a 3 a 2 a 1 a 0 N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 3
0 1 0 1 4
0 1 1 0 5
0 1 1 1 6
1 0 0 0 5
1 0 0 1 6
1 0 1 0 7
1 0 1 1 8
1 1 0 0 8
1 1 0 1 9
1 1 1 0 1 0
1 1 1 1 1 115-15

Value

N = a3F5 + a2F4 + a1F3 + a0F2, where ai εε
{0,1} and Fi is the ith Fibonacci
number.  Fi = Fi-1 + Fi-2 & F1 = F2 = 1.
N = a35 + a23 + a12 + a0

.

Number of
    representatives

Figure 8.  The 4-Bit Fibonacci Number System in
Which the Most 1’s Exist.

H.  NEGA-FIBONACCI NUMBER SYSTEM

Another extension of the Fibonacci
number system represents negative integers as well
as positive integers.  Let F-i = (-1)i+1Fi, and let

N = an-1F-(n+1) + ... + a2 F-4 + a1 F-3 + a0 F-2,

where ai ∈ {0,1} and Fi is a Fibonacci number.

Negative values of N occur when the sum of
negative Fibonacci numbers exceeds the sum of
positive numbers in the representation.  The case
of n = 4 is shown in Fig. 9.  Note that this number
system has many redundant representatives.

15-15

Value

N = a3F-4 + a2F-3 + a1F-2 + a0F-1, where ai εε
{0,1} and F-i= (-1)i+1Fi for Fi is the ith
Fibonacci number.  Fi = Fi-1 + Fi-2  &  F1

= F2 = 1.    N = a3(-3) + a22 + a1(-1) + a0
.

Number of
    representatives

a 3 a 2 a 1 a 0  N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 -1
0 0 1 1 0
0 1 0 0 2
0 1 0 1 3
0 1 1 0 1
0 1 1 1 2
1 0 0 0 -3
1 0 0 1 -2
1 0 1 0 -4
1 0 1 1 -3
1 1 0 0 -1
1 1 0 1 0
1 1 1 0 -2
1 1 1 1 -1

Figure 9.  The 4-Bit Nega-Fibonacci Number
System.

I.  NEGA-FIBONACCI NUMBER SYSTEM
WITHOUT ADJACENT 1’S

It has been shown Bunder [3] that, in the
nega-Fibonacci number system, if the tuples with
adjacent 1’s are removed, then the remaining
tuples represent distinct values.  Fig. 10 below
shows that, for the 4-bit system, there are 8
remaining tuples, representing the values -4
through 3.

15-15

Value

N = a3F-4 + a2F-3 + a1F-2 + a0F-1, where ai εε
{0,1} and F-i= (-1)i+1Fi for Fi is the ith
Fibonacci number.  Fi = Fi-1 + Fi-2  &  F1

= F2 = 1.    N = a3(-3) + a22 + a1(-1) + a0
.

a 3 a 2 a 1 a 0 N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 -1
0 0 1 1 0
0 1 0 0 2
0 1 0 1 3
0 1 1 0 -1
0 1 1 1 2
1 0 0 0 -3
1 0 0 1 -2
1 0 1 0 -4
1 0 1 1 -3
1 1 0 0 -1
1 1 0 1 0
1 1 1 0 -2
1 1 1 1 -1

Number of
     representatives

Figure 10.  The 4-Bit Nega-Fibonacci Number
System.

J.  TRIBONACCI NUMBER SYSTEM

A natural extension of the Fibonacci
number system is the tribonacci number system,
Capocelli et al [5] and Fraenkel [8].  In this
system, each number has the form

N = an-1Fn+1 + ... + a2 F4 + a1 F3 + a0 F2,

where Fi = Fi-1 + Fi-2 + Fi-3  and F4 = 22, F3 = 21,
and F3 = 20.  Fig. 11 shows that, for the 4-bit
tribonacci number system, there is one redundant
representative.

a 3 a 2 a 1 a 0 N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 7
1 0 0 1 8
1 0 1 0 9
1 0 1 1 1 0
1 1 0 0 1 1
1 1 0 1 1 2
1 1 1 0 1 3
1 1 1 1 1 415-15

Value

N = a3F5 + a2F4 + a1F3 + a0F2, where ai εε
{0,1} and Fi is the ith Tribonacci number.
Fi = Fi-1 + Fi-2 + Fi-3  & F4 =22  F3=21 &
F2= 20.    N = a37 + a24 + a12 + a0

.

Number of
     representatives
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Figure 11.  The 4-Bit Tribonacci Number System.

K.  RESTRICTED TRIBONACCI NUMBER
SYSTEM

Fraenkel [8]  has  shown  that if there are
no groups of three or more consecutive 1’s, then
the representations are unique.  Fig. 12 shows that,
for the 4-bit tribonacci number system, eliminating
4-tuples with three or more consecutive 1’s yields
a number system in which 0, 1,  ... , 12 have unique
representations.

a 3 a 2 a 1 a 0 N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 7
1 0 0 1 8
1 0 1 0 9
1 0 1 1 1 0
1 1 0 0 1 1
1 1 0 1 1 2
1 1 1 0 1 3
1 1 1 1 1 415-15

Number of numbers

Value

N = a3F5 + a2F4 + a1F3 + a0F2, where ai εε
{0,1} and Fi is the ith Tribonacci number.
Fi = Fi-1 + Fi-2 + Fi-3  & F4 =22  F3=21 &
F2= 20.    N = a37 + a24 + a12 + a0

.

Figure 12.  The 4-Bit Tribonacci Number System
in Which No Groups of Three or More

Consecutive 1’s Occurs.

This result is can be made more general.
Indeed, Fraenkel [8] has shown that in number
systems where Fi is given as

Fi = Fi-1 + Fi-2 + ... +Fi-m  ,

for i > m+1 and Fi = 2i-2, for 1 < i < m+1, then if
there are no more than m-1 consecutive 1’s, the
representations are unique.

L.  FIBONACCI-LIKE NUMBER SYSTEM

Another natural extension of the
Fibonacci number system is a Fibonacci-like
number system Klein [13], where each number has
the form

N = an-1Fn+1 + ... + a2 F4 + a1 F3 + a0 F2,

where Fi = Fi-1 + Fi-m  for i > m+1, and Fi = i-1, for
1 < i < m+1, where m > 2.  Fig.  13 shows a 4-bit
Fibonacci-like number system.  This is redundant;
five duplicate representations exist.

L.  FIBONACCI-LIKE NUMBER SYSTEM IN
WHICH EACH PAIR OF 1’S IS SEPARATED
BY TWO OR MORE 0’S.

From  Theorem 1  of  Fraenkel [8],  we
can conclude that if every pair of 1’s is separated

a 3 a 2 a 1 a 0 N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 3
0 1 0 1 4
0 1 1 0 5
0 1 1 1 7
1 0 0 0 4
1 0 0 1 5
1 0 1 0 6
1 0 1 1 7
1 1 0 0 7
1 1 0 1 8
1 1 1 0 9
1 1 1 1 1 015-15

Value

N = a3F5 + a2F4 + a1F3 + a0F2, where ai εε
{0,1} and Fi is the ith Fibonacci-like
number.  Fi = Fi-1 + Fi-3  & F4 =3,  F3=2, &
F2= 1.    N = a34 + a23 + a12 + a0

 .

Number of
     representatives

Figure 13.  The 4-Bit Fibonacci-Like Number
System.

by at least m-1 0’s, then the tuples are unique.  Fig.
14 shows that, if we do this in the 4-bit system,
then the numbers 0, 1, ... , 5 are represented
uniquely.

a 3 a 2 a 1 a 0 N
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 3
0 1 0 1 4
0 1 1 0 5
0 1 1 1 7
1 0 0 0 4
1 0 0 1 5
1 0 1 0 6
1 0 1 1 7
1 1 0 0 7
1 1 0 1 8
1 1 1 0 9
1 1 1 1 1 015-15

Value

N = a3F5 + a2F4 + a1F3 + a0F2, where ai εε
{0,1} and Fi is the ith Fibonacci-like
number.  Fi = Fi-1 + Fi-3  & F4 =3,  F3=2, &
F2= 1.    N = a34 + a23 + a12 + a0

.

Number of
    representatives

Figure 14.  The 4-Bit Fibonacci-Like Number in
Which Each Pair of 1’s is Separated by Two or

More 0’s.

M.  m-NACCI NUMBER SYSTEM

Another natural extension of the
Fibonacci number system is a multiple-valued
system in which a number is represented by

N = an-1Fn+1 + ... + a2 F4 + a1 F3 + a0 F2,

where the digits, Fi,  are 0, 1,  ... ,  and m-1, and
the basis is given as
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Fi = m Fi-1 - Fi-2    

for i > 3, and F3 = m, and F2 = 1, where m > 3.
Fig. 15  shows a 3-digit system, where m = 3.
Here, there are two redundant representatives.

a 2 a 1 a 0 N
0 0 0 0
0 0 1 1
0 0 2 2
0 1 0 3
0 1 1 4
0 1 2 5
0 2 0 6
0 2 1 7
0 2 2 8
1 0 0 8
1 0 1 9

2 2 0 2 2
2 2 1 2 3
2 2 2 2 420

Value

10

N = a2F4 + a1F3 + a0F2, where ai εε  {0,1,2}
and Fi is the ith m - nacci number.  Fi =
mFi-1 - Fi-2    ,          F3 = m         &        F2= 1.
N = a28 + a13 + a0

   with  m = 3.

Number of
    representatives

Figure 15.  The 3-Digit m-nacci- Number System,
Where m = 3.

N.  m-NACCI NUMBER SYSTEM WHERE
EACH PAIR OF m-1’S IS SEPARATED BY
AT LEAST ONE i SUCH THAT i∈{0,1,...m-3}

Klein [13] has shown that in the m-nacci
number system, if each m-1 is separated by at least
one i such that i ∈ {0,1,...m-3}, then each number
has a unique representation.  Fig. 16 shows that if
we apply this restriction to the number system
shown in Fig. 15, then six of the 27 tuples are
redundant, leaving 21 numbers, each with a unique
representation.

a 2 a 1 a 0 N
0 0 0 0
0 0 1 1
0 0 2 2
0 1 0 3
0 1 1 4
0 1 2 5
0 2 0 6
0 2 1 7
0 2 2 8
1 0 0 8
1 0 1 9

2 2 0 2 2
2 2 1 2 3
2 2 2 2 420

Value

10

Number of
    representatives

N = a2F4 + a1F3 + a0F2, where ai εε  {0,1,2}
and Fi is the ith m - nacci number.  Fi =
mFi-1 + Fi-2    ,          F3 = m         &        F2= 1.
N = a28 + a13 + a0

   with  m = 3.

Figure 16.  The 3-Bit m-nacci- Number System,
Where m = 3 and Every Pair of 2’s is Separated by

At Least One 0.

IV.  MEASURING REDUNDANCY

In Butler and Sasao [4], we ask and
answer the question

To what extent does redundancy exist in
redundant number systems?

The question is important when we restrict the
tuples allowed in the system.  For example, we are
interested in the extent to which the restriction - no
adjacent 1’s - reduces the tuples available to
represent numbers in the Fibonacci number system.
We measure redundancy in two ways  1) the
number of tuples available to represent values and
2) the percentage of various digits over all
representations.  For example, we expect that the
restriction - no adjacent 1’s - to reduce the number
of 1’s in comparison to the number of 0’s.  We are
interested in the extent to which this happens.

Our first result shows the distribution of
non-redundant representations in the Fibonacci,
tribonacci, quadranacci, etc. number systems.
Specifically, Fig. 17 shows the number of
representations verses the number of 1’s in 16-bit
representatives.  That is, we consider 16-bit tuples
whose value is given by

N = a15F17 + ... + a2 F4 + a1 F3 + a0 F2,    (1)

where Fi = Fi-1 + Fi-2 + ... +Fi-m  , for i > m+1 and
Fi = 2i-2, for 1 < i < m+1.  For m = 2, 3, and 4, this
represents the Fibonacci, tribonacci, and
quadranacci number systems, respectively.  It is

Tribonacci
numeration system

Quadranacci
numeration system

Figure 17. [4]  The distribution of non-redundant
representatives in 16-bit number systems.

interesting that the Fibonacci number system has
very few representatives (in which pairs of 1’s are
not allowed) compared to the tribonacci number
system (in which triples of 1’s are not allowed).
By way of comparison, the distribution of 1’s in
the standard binary number system (which
corresponds to m = ∞) is shown.  Table 1 below
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shows the proportion of bits that are 1 in the
allowed representatives when the number of bits is
large.

m Proportion
of 1’s

2 0.2764
3 0.3816
4 0.4337
5 0.4621
6 0.4782
7 0.4875
8 0.4929
∞ 0.5000

Table 1.[4]  The proportion of bits that are 1 in
various number systems.

Fig. 18 shows the distribution of 1’s for the
generalized Fibonacci number systems.  In these
systems, a representative represents a number as in
(1), where Fi = Fi-1 + Fi-m  for i > m+1, and Fi = i-
1, for 1 < i < m+1, where m > 2.  As in the
previous example, m = 2 corresponds to the
Fibonacci number system.  It is interesting, that, in
this case, that there are significantly more
representatives when m = 2 than when m = 3.

Every pair of 1’s is
separated by at least two 0’s

Every pair of 1’s is separated
by at least three 0’s

Figure 18. [4]  The distribution of non-redundant
representatives in 16-bit number systems.

Table 2 shows the proportion of digits that are 0, 1,
... , m-1 in m-nacci number systems.

V.  REDUNDANCY IN ARITHMETIC
OPERATIONS

Kaneyama et al [11] and Harata et al [10]
have demonstrated the advantages of a redundant
number system in multiple-valued multipliers.  The
following example is representative of their

implementation.  Let an integer N have the
representation

m Proportion
of 0’s

Proportion of
1’s, 2’s, ... m-1’s

2 0.7236 0.2764
3 0.8057 0.3816
4 0.8492 0.4337
5 0.8762 0.4621
6 0.8948 0.4782
7 0.9084 0.4875
8 0.9188 0.4929
∞∞ 1-1/m 1/m

Table 2.[4]  The proportion of bits that are 0, 1, ...
, m-1 in various number systems

N = an-12
n-1 + ... + a22

2 + a12
1 + a02

0,

where ai ∈ {0,1,2,3}.  This number system is
redundant;  for example, 101 = 021 = 5.   Addition,
in this system, is done without carries across long
strings of digits.  Specifically, carries occur across
only three digits.  As a result, there is little delay
associated with carry.  To illustrate, consider the
addition of 10231 + 11111.  Both 10231 and
11111 are 31 and their sum is 62.  The first step is
to perform the addition digit by digit, where there
is no carry in nor out of each digit.  This is
illustrated by the first three lines in Fig. 19 below.
Notice that the sum, Z, has a digit, 4, that is not
allowed in this system.  The next step is to convert
all digits into their binary equivalent.  The
maximum digit is 6 (3+3), and so three bits are
necessary to represent such a number.  The next
three lines in Fig. 17 show the binary equivalent of
the sum digits.  These bits are then added, forming
a sum S.   In Fig. 19, this is the seventh line.  Note
that the largest digit in S is 3, since we add at most
three 1 bits.  The resulting sum is equivalent to Z
and the digits are between 0 and 3.  Thus, it is a
number in the number system.

1
A  = 1 0 2 3 1
B  = 1 1 1 1

Z = A+B  =

C1 =
C0 =

C2 =
S  =

2

1
0

0

4

0
0

1

3

1
1

0

1

0
1

0

2

1
0

0
1 0 3 1 10 0

Figure 19 [11].  An example of addition in a
redundant number system.
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In performing the addition, it is important
to note that carries occur across three digits only.
Fig. 20 shows an adder which performs the
addition shown in the example of Fig. 19.   This
shows clearly the extent to which the carries affect
the sum.  The longest path in this circuit occurs
through a (wired) summation gate, an MVL-to-
Binary-Converter, and another summation gate.

MVL to
Binary

Converter

+
Z

C0C1C2

A0 B0

MVL to
Binary

Converter

+

+

Z

C0C1C2

A1 B1

MVL to
Binary

Converter

+

+

Z

C0C1C2

A2 B2

MVL to
Binary

Converter

+

+

Z

C0C1C2

An Bn

S0S1S2Sn-1SnSn+1

Figure 20  [11].  An example circuit for the
addition of redundant numbers.

It is interesting to note that addition is
done in constant time;  that is, it is done in time
independent of the number of digits.

VI.  CONCLUSIONS

We have considered number systems
spanning from binary to multiple-valued and from
non-redundant to redundant.   While non-
redundant number systems represent more numbers
than redundant number systems, the latter has
significant advantages with respect to transmission
or storage of data and with respect to high -speed
arithmetic operations.
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ABSTRACT

We survey number systems in which the digits are
multiple-valued and the representations are redundant.  In
a redundant number system, there is at least one value that
can be written in at least two ways.  As a basis of
comparison, we consider also non-redundant binary
number systems, including the standard binary number
system.  We compare systems on the basis of redundancy
- that is, how many redundant numbers exist.


