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Abstract We investigate the eventual sign changing for the solutions of the
linear equation

(

x(α)
)′
+ q(t)x = 0, t ≥ 0, when the functional coefficient q

satisfies the Kamenev-type restriction lim sup
t→+∞

1
tε

∫ t

t0
(t − s)εq(s)ds = +∞ for

some ε > 2, t0 > 0. The operator x(α) is the Caputo differential operator
and α ∈ (0, 1).
Key-words: Fractional differential equation; Oscillatory solution; Caputo
differential operator; Riccati inequality; Averaging of coefficients
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1 Introduction

The oscillation of solutions for ordinary differential equations is an important
topic in applied mathematics. We note that the KBM (Krylov-Bogoliubov-
Mitropolsky) averaging technique and the theory of adiabatic invariants were
applied successfully to problems in celestial mechanics [5, pp. 41, 195] that
can be connected with the oscillation theory.

In the particular case of the second order linear differential equation

x′′ + q(t)x = 0, t ≥ 0, (1)

where the functional coefficient q : [0,+∞) → R is continuous, I.V. Kamenev
[9] proved in 1978 that oscillations occur when

lim sup
t→+∞

1

tε

∫ t

t0

(t− s)εq(s)ds = +∞ (2)

for some ε > 1 and t0 > 0. This result replaces the classical Wintner-
Hartman averaging quantity lim sup

t→+∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds from the various state-

ments of oscillation criteria regarding (1) with the left-hand part of (2). In
the original paper the number ε ≥ 2 was an integer, but J.S.W. Wong [17,
pp. 418–419] noticed that it could be recast with any real number greater
than 1.

The aim of this paper is to present a Kamenev type theorem in the
framework of fractional differential equations. To the best of our know-
ledge, such a result has not been established for any generalized differential
equation.

Differential equations of non-integer order, also called fractionals (FDE’
s), arise naturally in models in engineering, physics or chemistry and we refer
the reader to [1, 6, 10, 11, 12].

Consider a function h ∈ C1(I,R) ∩ C(I,R) with lim
tց0

[t1−αh′(t)] ∈ R for

some α ∈ (0, 1), where I = (0,+∞). The Caputo derivative of order α of h
is defined as

h(α)(t) =
1

Γ(1− α)
·
∫ t

0

h′(s)

(t− s)α
ds, t ∈ I,

where Γ is the Euler function Gamma, cf. [12, p. 79]. Note if we let
the function h′ be absolutely continuous [14, Chapter 7] then the (usual)
derivative of h(α) will exist almost everywhere with respect to the Lebesgue
measure m on R, see [15, p. 35, Lemma 2.2]. Further, we have that

h(t) = h(0) +
1

Γ(α)

∫ t

0

h(α)(s)

(t− s)1−α
ds, t ∈ I, (3)
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provided that h(α) is in L∞(m).
The FDE we investigate in this paper is

(

x(α)
)′
(t) + q(t)x(t) = 0, t ∈ I, (4)

where the continuous functional coefficient q : I → R satisfies the Kamenev
condition (2) for some ε > 2. The asymptotic behavior of solutions to (4)
was discussed in [3] and the authors showed that if

∫ +∞

0

t1+α|q(t)|dt < +∞ and

∫ +∞

0

tα|q(t)|dt < Γ(1 + α), (5)

then, for every c1, c2 ∈ R, the equation (4) has a solution x with the asymp-
totic expression

x(t) = c1 + c2 · tα + o(1) when t → +∞. (6)

Finally we mention a recent contribution [8] which concerns oscillation of
perturbed FDE’s with power-like nonlinearities. The proofs there rely exclu-
sively on the averaging of the perturbation thus being completely different
from the method in our investigation.

2 Statement of our result and a comment

Throughout this note, by a solution to the (1 + α)–order FDE (4) we mean
any function x ∈ C1(I,R) that verifies (4) in I. Such a solution x oscillates
if there exists an increasing, unbounded from above, sequence (tn)n≥1 ⊂ I

such that

x(t2n−1) < 0 and x(t2n) > 0, n ≥ 1.

Theorem 1 Any solution x of (4), (2) either oscillates or satisfies the ine-
quality

lim inf
t→+∞

{

x(α)(t) ·
[

x′(t)− x(α)(t)
]}

≤ 0. (7)

More precisely, in the situation (7), there is an increasing, unbounded from
above, sequence (Tn)n≥1 ⊂ I such that

x(α)(Tn) ·
[

x′(Tn)− x(α)(Tn)
]

< 0, n ≥ 1. (8)
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At first glance, the conclusion of our result is rather disappointing given
the fact that we are not able to insulate oscillations from other types of
asymptotic behavior. However, let us recall the classical Fite oscillation
criterion [7] where the conclusion is again formulated as a list of multiple
outcomes.

To establish that the possibility (7) cannot be removed from the statement,
let us consider the case when q(t) > 0 for all t ≥ 0. Obviously, from the ine-
qualities

1

tε

∫ t

t0

(t− s)εq(s)ds ≤ 1

tε

∫ t

t0

tεq(s)ds ≤
∫ +∞

t0

q(s)ds, t0 > 0,

we get that
∫ +∞

0
q(t)dt = +∞.

Assume now that x is a non-oscillatory solution to (4), which implies,
without loss of generality, that we can take x(t) > 0 for every t ≥ T >

0. Since
(

x(α)
)′
(t) < 0 in [T,+∞), that is, the function x(α) is eventually

decreasing, there exists L ∈ [−∞,+∞) such that lim
t→+∞

x(α)(t) = L.

Suppose further, for the sake of contradiction, that (7) does not hold
either, i.e.

x(α)(t) ·
[

x′(t)− x(α)(t)
]

≥ 0 for all t ≥ T. (9)

Consider first the case L < 0. Now since x(α) becomes eventually negative
valued then the function x′ − x(α) becomes eventually non-positive valued.
Thus there exists a T1 ≥ T large enough so that

x′(t) ≤ x(α)(t) <
L

2
, t ≥ T1.

An integration with respect to the variable t leads to x(t) ≤ x(T1) +
L
2
·

(t − T1) and so lim
t→+∞

x(t) = −∞, which contradicts the eventual positivity

of x(t).
Consider next the case L > 0. Now, x′(t) ≥ x(α)(t) > L

2
for any t ≥ T2 ≥

T large enough. We get that lim
t→+∞

x(t) = +∞ and also, as a by-product,
∫ +∞

0
q(t)x(t)dt = +∞.

However, since

x(α)(t) = x(α)(T2)−
∫ t

T2

q(s)x(s)ds, t ≥ T2,

we deduce that lim
t→+∞

x(α)(t) = −∞ which, again, contradicts our hypotheses.
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Finally consider the case L = 0. Since the function x(α) is eventually
decreasing, we have x(α)(t) > L = 0 for all t ≥ T . Similarly, x′(t) ≥ x(α)(t) >
0 throughout [T,+∞). This yields x(t) ≥ x(T ) > 0 for all t ≥ T and so

x(α)(t) = x(α)(T )−
∫ t

T

q(s)x(s)ds ≤ x(α)(T )− x(T ) ·
∫ t

T

q(s)ds

→ −∞ when t → +∞,

a contradiction.
What kind of functions verify (7)? An elementary example — though

not from C1(I,R) — is x with x(t) = tβ, t ≥ 0, for some β ∈ (0, α). Here,

x(α)(t) = Γ(1+β)
Γ(1+β−α)

· tβ−α, t > 0. The coefficient q(t) of (4) reads now as

q(t) = C(α, β) · t−1−α, where C(α, β) = (α−β)Γ(1+β)
Γ(1+β−α)

, and, unfortunately, does

not satisfy the condition (2), since

1

tε

∫ t

t0

(t− s)εq(s)ds =

(

t− t0

t

)ε ∫ +∞

t0

q(τ)dτ

− ε

tε

∫ t

t0

(
∫ +∞

s

q(τ)dτ

)

ds

(t− s)1−ε

≤
∫ +∞

t0

q(τ)dτ < +∞.

Even though the functional coefficient q(t) = C(α, β) · t−1−α does not
satisfy either of the restrictions in (5), it seems to us that there is no easy
way to determine closed form solutions of (4), (2) that will obey (8). On the
other hand, notice that, for any positive constant A, the functional coefficient
q(t) = A verifies the Kamenev condition (2). The formula of the Laplace
transform for Caputo derivatives [12, p. 106, Eq. (2.253); p. 21, Eq. (1.80)]
leads us to the oscillatory solution x(t) = E1+α(−At1+α), t ≥ 0, of (4), where
Eγ denotes the Mittag-Leffler function [12, p. 16].

3 Proof of Theorem 1

Assume that the solution x of (4) does not possess any zeros in [T,+∞) for
some T ≥ 0 large enough. Suppose also, for the sake of contradiction, that
(9) holds true.

We introduce the quantity w(t) = x(α)(t)
x(t)

, where t ≥ T . Now we have

w′(t) = −q(t)− x(α)(t) · x′(t)

[x(t)]2
, t ≥ T,
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and so we have the typical Riccati inequality

w′(t) + [w(t)]2 + q(t) =
−x(α)(t) · x′(t) +

[

x(α)(t)
]2

[x(t)]2
≤ 0, (10)

valid for every t ≥ T .
Further, we deduce that

∫ t

T

(t− s)εq(s)ds ≤ −
∫ t

T

(t− s)ε
{

w′(s) + [w(s)]2
}

ds

= w(T ) · (t− T )ε − ε

∫ t

T

w(s)(t− s)ε−1ds

−
∫ t

T

(t− s)ε[w(s)]2ds

≤ |w(T )| · (t− T )ε + ε

∫ t

T

|w(s)|(t− s)ε−1ds

−
∫ t

T

(t− s)ε[w(s)]2ds. (11)

Notice as well that

(t− s)ε[w(s)]2 − ε|w(s)|(t− s)ε−1

=
[

(t− s)
ε

2 |w(s)| − ε

2
(t− s)

ε

2
−1
]2

− ε2

4
(t− s)ε−2, (12)

where t ≥ s ≥ T .
By combining (11), (12), we are able to eliminate the quantity w(s) from

the estimate of q, namely
∫ t

T

(t− s)εq(s)ds ≤ |w(T )|(t− T )ε +
ε2

4
· (t− T )ε−1

ε− 1
.

Thus,

1

tε

∫ t

T

(t− s)εq(s)ds ≤ |w(T )|+ ε2

4(ε− 1)
· 1
t
, t ≥ T.

This estimate, obviously, contradicts the Kamenev condition (2).
The proof is complete.

Let us return to (7) for other comments.
Firstly, suppose that equation (4) has a solution x ∈ C2(I,R) such that

x′′(t) ≤ 0, t ≥ T > 0, and lim
t→+∞

x′(t) = L ∈ I. (13)
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Without loss of generality, we may assume that

x′′(t) ≤ 0,
3L

2
≥ x′(t) ≥ L

2
, t ≥ T.

For any t ≥ 2T , we deduce that

1

Γ(1− α)

∫ t

0

x′(s)

(t− s)α
ds =

1

Γ(1− α)

(
∫ T

0

+

∫ t

T

)

x′(s)

(t− s)α
ds

≥ 1

Γ(1− α)

[
∫ t

T

x′(s)

(t− s)α
ds− 1

(t− T )α

∫ T

0

|x′(s)|ds
]

≥ 1

Γ(1− α)

[

x′(t) ·
∫ t

T

1

(t− s)α
ds− c(x, T )

(t− T )α

]

≥ 1

Γ(1− α)

[

L

2
· (t− T )1−α

1− α
− c(x, T )

T α

]

,

where c(x, T ) =
∫ T

0
|x′(s)|ds = x(T )− x(0).

Thus,

x(α)(t) ≥ 2L >
3L

2
≥ x′(t) ≥ L

2
> 0, t ≥ T3 ≥ 2T,

for some T3 = T3(α, x, T ) large enough. As a by-product,

x(α)(t) · [x′(t)− x(α)(t)] < 0, t ≥ T3.

In conclusion, if the Kamenev condition (2) would allow the existence
of solutions to (4) verifying (13) then these solutions are candidates for the
estimate (7).

To make a connection with (6), notice that the solutions from (13) have
the asymptotic expression

x(t) = c3 · t+ o(t) when t → +∞,

where c3 ∈ R. Such solutions, usually called asymptotically linear, are of
interest in the theory of fractional differential equations, see [2].

An open question is whether such solutions exist. However, in the case
of equation (1), if the functional coefficient q satisfies the restriction

∫ +∞

0

t ·max{q(t), 0}dt = +∞,
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then for all solutions x we get lim
t→+∞

x′(t) = 0, meaning they cannot verify

(13). Also, if

∫ +∞

0

−min{q(t), 0}dt < +∞,

then for all solutions x we obtain x′(t) = O
(

t−
1
2

)

when t → +∞; see [4, 16].

Even though we have focused here on FDE’s, the principle in Theorem
1 may be applied to various nonlinear differential equations. For example,
assume that we replace the Caputo derivative x(α) with Dx = x′√

1+(x′)2
. It is

clear that

(Dx) (t) · [x′(t)− (Dx) (t)] =
[x′(t)]2

1 + [x′(t)]2
·
{

√

1 + [x′(t)]2 − 1
}

≥ 0, t ∈ I.

According to Theorem 1, whenever the functional coefficient q obeys the
Kamenev restriction (2), the non-trivial solutions of the differential equation

(Dx)′ + q(t)x = 0, t > 0,

oscillate. This conclusion complements the foundational work in [13, Sect.
4.3].
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