ОПД.Р.03 СТРОИТЕЛЬНАЯ МЕХАНИКА СТАТИЧЕСКИ ОПРЕДЕЛИМАЯ МНОГОПРОЛЕТНАЯ БАЛКА. ЛИНИИ ВЛИЯНИЯ

Методические указания по выполнению расчетно-графической работы

Указания составлены в соответствии с программой курса «Строительная механика» и предназначены для студентов строительных специальностей. Приведенный материал может быть использован для выполнения студентами соответствующей расчетно-графической работы, а также инженерами, работающими в области расчета стержневых систем. Работа подготовлена на кафедре «Теоретическая и прикладная механика».

ОГЛАВЛЕНИЕ

1. ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА
1.1. Кинематический анализ
1.2. Образование поэтажной схемы
1.3. Построение эпюр внутренних силовых факторов
1.4. Построение линий влияния в двухопорной балке 7
1.4.1. Линии влияния реакций
1.4.2. Линии влияния изгибающего момента
1.4.3. Линии влияния поперечной силы
1.4.4. Линии влияния в двухопорной балке с консолями 10
1.5. Построение линий влияния в многопролетной балке12
1.6. Определение внутренних силовых факторов и реакций опор
по линиям влияния
2. ПРИМЕР РАСЧЕТА
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА

Рассматриваются основные этапы расчета многопролетной стати - чески определимой балки.

1.1. Кинематический анализ

Кинематический анализ задачи выполняется с использованием следующей формулы:

$$W = 3D - 2HI - C_o$$

где W – число степеней свободы задачи,

D — число дисков (пролетов),

Ш – число шарниров,

 C_o – число кинематических закреплений (опорных стержней).

Если W = 0, то задача статически определимая. При W < 0 задача статически неопределимая, а при W > 0 – геометрически изменяемая.

В задаче статически определимой и геометрически неизменяемой число дисков на единицу больше числа шарниров, т. е.

$$D = III + 1$$
.

Подставив выражение D в формулу для вычисления W , получим $I\!I\!I = C_o - \ \mathcal{J} \ .$

Таким образом, число опор и шарниров при заданном числе дисков определяется условием геометрической неизменяемости и стати ческой определимости многопролетной балки.

1.2. Образование поэтажной схемы

Для удобства расчета и наглядности представления о характере работы каждого из дисков многопролетной статически определимой балки строится ее поэтажная схема.

Так как шарнир эквивалентен шарнирно-неподвижной опоре по числу связей и степеней свободы, то, заменив шарниры в балке на шарнирно-неподвижные опоры, можно построить поэтажную схему.

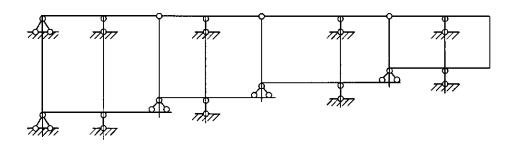
Различают следующие типы многопролетных балок.

Первый тип характеризуется тем, что во всех пролетах, кроме одного (возможна и консоль), располагается по шарнирно-подвижной опоре. При замене шарниров на опоры получим однопролетные балки, каждая из которых опирается на консоль предыдущей (рис.1.1).

Второй тип характеризуется чередованием пролетов, имеющих две шарнирно-подвижные опоры, с безопорными. При этом в поэтажной схеме на консоли основных балок опираются балки-вставки (рис.1.2).

Возможна и балка, совмещающая первый и второй типы (рис.1.3).

Для обеспечения статической определимости балок-вставок (тип 2, тип 3) горизонтальная связь одной из опор этих балок переносится на соседнюю справа основную балку (рис. 1.2, 1.3). В поэтажной схеме балки нижний этаж – основная балка, а верхний – второстепенная.


1.3. Построение эпюр внутренних силовых факторов

Поэтажная схема позволяет строить эпюры для балки (этажа) в отдельности, что рассматривалось в предыдущих разделах курса. Очевидно, построение эпюр необходимо выполнять с верхнего этажа, последовательно опускаясь до нижнего.

Построив эпюры внутренних силовых факторов для верхнего этажа, необходимо найденные реакции опор заменить на противоположно направленные силы и приложить их к нижнему этажу поэтажной схемы. Построение эпюр для нижнего этажа выполнять от заданной нагрузки и этих сил.

Построив эпюры внутренних силовых факторов, нужно выполнить статическую проверку для всей многопролетной балки, т. е. сумма заданных сил и реакций опор должна быть равна нулю. Кроме этого, необходимо проверить, соблюдается ли дифференциальная зависимость для каждого участка балки, т. е.

$$Q = dM/dx$$
.

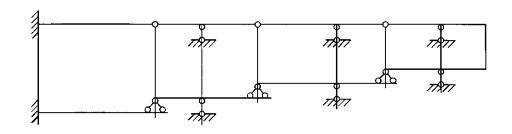


Рис. 1.1. Первый тип балки

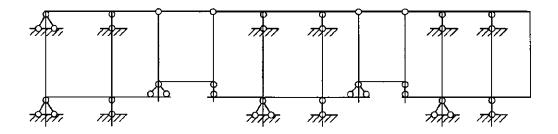


Рис. 1.2. Второй тип балки

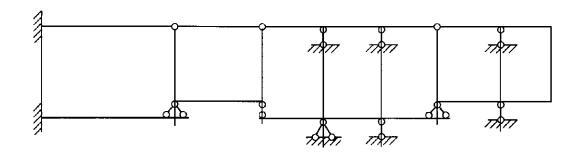


Рис. 1.3. Третий тип балки

1.4. Построение линий влияния в двухопорной балке

График, выражающий закон изменения реакции опоры или какого-либо внутреннего силового фактора в определенном сечении сооружения, в функции от положения движущегося единичного груза постоянного направления называется линией влияния.

Для построения линии влияния используются уравнения статики. Аналитическое выражение зависимости искомой величины от текущей координаты единичного груза и даст уравнение линии влияния.

1.4.1. Линии влияния реакций опор

Для построения линии влияния левой реакции (рис. 1.4,а) установим единичный груз в произвольное сечение на расстоянии x от опоры A и запишем уравнение моментов относительно опоры B:

$$A \cdot l - P \cdot (l - x) = \theta$$
.

При P = 1 получим

$$A = (l-x)/l$$
.

Так как $0 \le x \le l$, то при x = 0 A = 1, а при x = l A = 0.

Полученное выражение реакции A является уравнением первой степени и, следовательно, линия влияния реакции опоры A представляет собой прямую линию (рис. 1.4, а).

Выражение для опорной реакции B получим из уравнения моментов относительно опоры A :

$$B \cdot l - 1 \cdot x = \theta$$
.

Откуда B = x/I.

1.4.2. Линии влияния изгибающего момента

Для построения линии влияния изгибающего момента в сечении κ , расположенном на расстоянии a от левой опоры, надо получить выражение момента в зависимости от расположения груза справа или слева от сечения (Рис. 1.4, б).

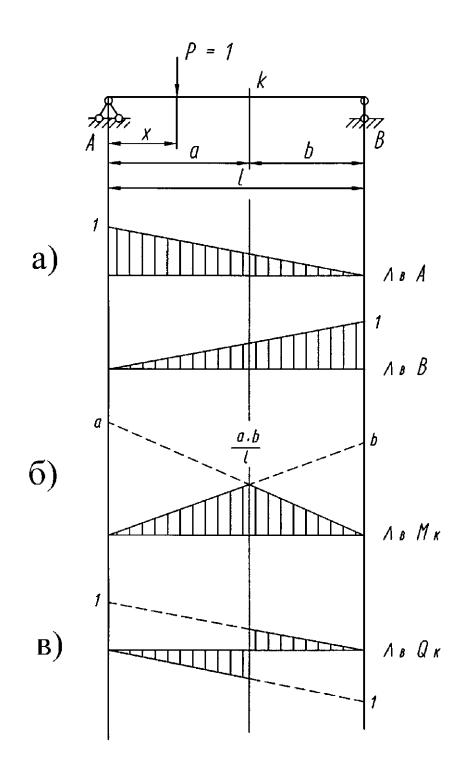


Рис. 1.4. Линии влияния в двухопорной балке

Пусть единичный груз движется справа от сечения, т. е.

$$a \leq x \leq 1$$
.

Выражение изгибающего момента слева от сечения будет

$$M_K = A \cdot a$$
.

Из уравнения видно, что линия влияния M (правая ветвь) строится как линия влияния реакции A с умножением всех ординат на a.

Рассмотрим теперь случай, когда груз расположен слева от сечения, т. е. $x \leq a$.

Слева от сечения две силы: реакция A и движущийся единичный груз, а справа только реакция B. Определяем изгибающий момент как сумму сил справа от сечения:

$$M_K = B \cdot b$$
.

Левая ветвь строится как линия влияния реакции B с умножением всех ординат на b.

Левая и правая ветви пересекутся под сечением κ , что следует из условия единственности значения изгибающего момента при расположении единичного груза над сечением.

В этом нетрудно убедится, определив ординату линии влияния под сечением κ из двух треугольников, которые получились: один при построении правой ветви, а другой при построении левой ветви. Ордината под сечением будет равна

$$a \cdot b / I$$
.

1.4.3. Линии влияния поперечной силы

Величина и знак поперечной силы зависят от положения единичного груза относительно сечения κ , и поэтому будем строить линию влияния поперечной силы при двух предположениях, как и для изгибающего момента.

Пусть единичный груз движется справа от сечения

$$Q_K = A = (l-x)/I.$$

Это выражение поперечной силы определяет правую ветвь линии влияния. В этом случае поперечная сила положительная, так как стремится повернуть балку по часовой стрелке (слева – вверх).

При
$$x = \theta$$
 $Q = 1$,

при
$$x = I$$
 $Q = \theta$.

Во втором случае, когда груз движется слева от сечения, выражение поперечной силы будет

$$Q_K = -B = -x/I,$$

которое определяет левую ветвь. Поперечная сила отрицательная, так как стремится повернуть балку против часовой стрелки (справа – вверх).

При
$$x = \theta$$
 $Q = \theta$,

при
$$x = I$$
 $Q = -1$.

Линия влияния поперечной силы приведена на рис. 1.4, в.

1.4.4. Линии влияния в двухопорной балке с консолями

Для построения линий влияния реакций опор, моментов и поперечных сил в двухконсольной балке нужно воспользоваться теми же условиями равновесия. Отличие будет состоять лишь в том, что груз при движении переходит и на консоли (рис. 1.5).

Чтобы это учесть, достаточно абсциссу груза x изменить в пределах от θ до 1+d и от θ до -c при начале координат в опоре A . Это справедливо для всех линий влияния.

Для сечения 1, расположенного на левой консоли (сила слева от сечения), получим

$$M_1 = -P \cdot x = -x$$
.

Если сила справа от сечения, то $M_1 = 0$.

Таким образом, левая ветвь — прямая линия с нулевой ординатой при x = 0 и ординатой e на конце консоли.

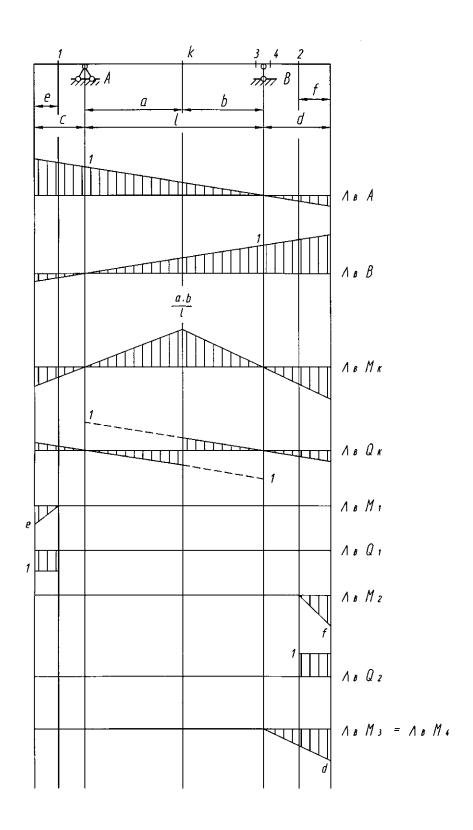


Рис. 1.5. Линии влияния в балке с консолями

Поперечная сила в сечении 1 при движении груза справа от сечения будет равна $Q_1 = \theta$.

Если груз движется слева от сечения, то $Q_I = -1$.

В этом случае правая ветвь имеет нулевые ординаты и совпадает с нулевой линией, а левая ветвь параллельна нулевой линии с ординатами, равными единице.

Кроме этого, на рис . 1.5 представлены и некоторые другие линии влияния для характерных сечений.

1.5. Построение линий влияния в многопролетной балке

Линия влияния реакций опор, изгибающих моментов и поперечных сил в каком-либо сечении в многопролетной статически определимой балке удобнее строить с использованием ее поэтажной схемы, которая, как отмечалось, дает наглядное представление о взаимодействии пролетов.

Рассмотрим построение линий влияния в многопролетной балке на конкретном примере (рис . 1.6) .

Межконсольные балки-вставки относительно основных двух консольных балок являются передаточными и испытывают нагрузку только тогда, когда она действует непосредственно на эту вставку.

Линия влияния во второстепенной балке не отличается от линий влияния в однопролетной балке и ограничена пределами этого элемента с нулевыми ординатами на остальных участках.

Линию влияния в основной балке строим как в обычной. При перемещении единичного груза по второстепенным балкам величина его влияния на консоль основной балки изменяется по линейному закону, а точка передачи нагрузки остается постоянной – шарнир. Для построения линий влияния достаточно определить ординаты ее в опорах второстепенных балок (шарнирах) из отношений сходственных сторон подобных треугольников.

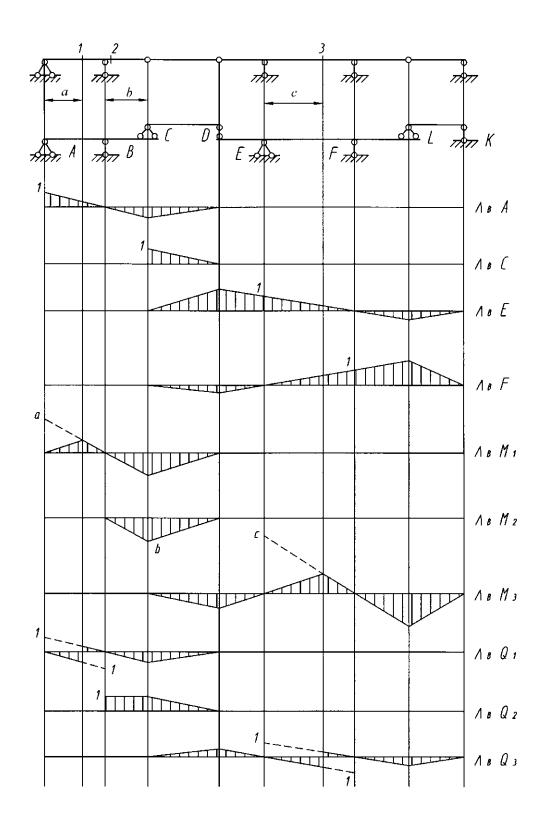


Рис. 1.6. Линии влияния в многопролетной балке

1.6. Определение внутренних силовых факторов и реакций опор по линиям влияния

Чтобы определить значение реакции опоры, изгибающего момента или поперечной силы в каком-либо сечении балки, необходимо построить соответствующую линию влияния реакции или внутреннего силового фактора для этого сечения.

Значение реакции опоры, изгибающего момента или поперечной силы в заданном сечении по соответствующей линии влияния определяется по формуле

$$S = \Sigma P \cdot y + \Sigma q \cdot \omega + \Sigma M \cdot tg \alpha$$
, Примечание:

где S – искомая величина,

P – внешняя сила,

q – расределенная нагрузка,

M – изгибающий момент,

 у – ордината линии влияния в сечении балки под соответствующей силой,

— площадь участка линии влияния под распределенной нагрузкой,

и – угол наклона линии влияния под изгибающим моментом.

Правило знаков для величин в этой формуле следующее.

Сила и распределенная нагрузка положительные, если они направлены вниз, т. е. по направлению единичного груза. Изгибающий момент положительный, если направлен против часовой стрелки. Ордината у и площадь ω берутся со своим знаком на линии влияния. Угол наклона линии влияния α положительный, если он образуется вращением нулевой линии по часовой стрелке.

Согласно приведенной формуле, при вычислении значения реакции опоры, изгибающего момента или поперечной силы в заданном сечении необходимо просуммировать произведения всех действующих на балку сил, моментов и распределенной нагрузки, на соответствуюющие параметры линии влияния.

2. ПРИМЕР РАСЧЕТА

Приведен пример выполнения расчетно - графической работы.

Для заданной схемы балки (рис. 1.7, а) требуется:

- построить эпюры изгибающих моментов и поперечных сил,
- выполнить статическую проверку,
- для сечений I, 2 и опор A, B, C построить линии влияния внутренних силовых факторов и реакций опор,
- определить внутренние силовые факторы и реакции опор по линиями влияния и сопоставить их с соответствующими значениями, вычисленными аналитически.

Решение задачи выполняется согласно приведенной последовательности расчета.

1. Кинематический анализ

Выполняется по формуле

$$W = 3D - 2III - C_o$$
.

В заданной схеме балки (рис. 1.7): D = 3, III = 2, $C_o = 5$.

Тогда $W = \theta$ и, следовательно, балка статически определимая.

2. Построение поэтажной схемы

Основная балка AB, т. к. имеет три кинематические связи. На балке AB надстраивается балка CD, на которой, в свою очередь, - балка EF.

3. Построение эпюр внутренних силовых факторов

Согласно поэтажной схеме многопролетной балки, построение эпюр выполняется с балки EF от заданной нагрузки. Балка CD, кроме заданной нагрузки, нагружается силой P, равной реакции в опоре E и противоположно направленной, балка AB, соответственно, нагружается силой P. Построенные эпюры для трех балок в отдельности объединяются в эпюры внутренних силовых факторов для всей многопролетной балки (рис.1.7, с).

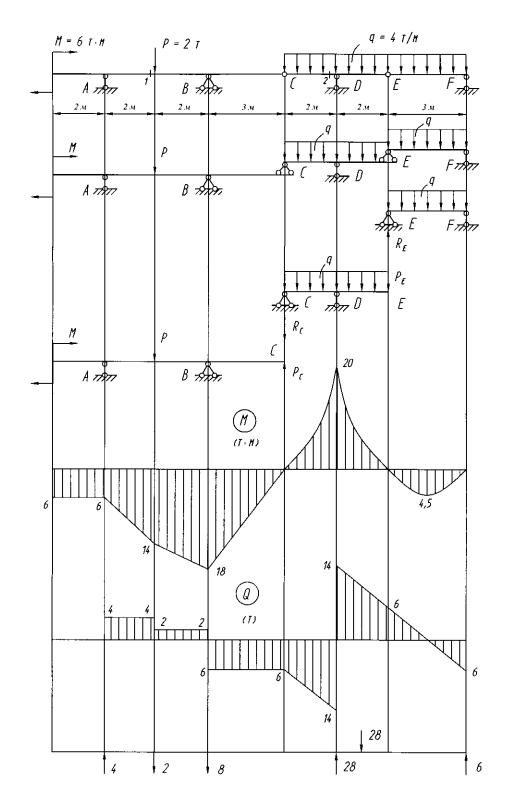


Рис. 1.7. Эпюры внутренних силовых факторов

4. Статическая проверка

На этапе построения эпюр внутренних силовых факторов рекомендуется выполнять статическую проверку для каждой балки в отдельности.

Для многопролетной балки в целом алгебраическая сумма проекций на ось Y всех действующих сил и реакций опор должна быть равна нулю (рис. 1.7), т. е.

$$\Sigma Y = R_A - P - R_B + R_D - q \cdot 7 + R_F =$$

$$-2 - 4 - 8 + 28 - 28 + 6 - 0.$$

Ниже эпюры Q приведены направления и значения сосредоточенных сил, действующих на балку, и реакций опор, которые определяются непосредственно по эпюре поперечных сил. Кроме этого приведена и равнодействующая распределенной нагрузки.

5. Построение линий влияния

Линии влияния реакций и внутренних силовых факторов для заданных опор и сечений строятся на той балке, на которой находится опора или сечение, а затем достраиваются на все второстепенные балки (рис. 1.8).

6. Определение реакций опор и внутренних силовых факторов по линиям влияния

Выполняется по формуле

$$S = \sum P \cdot y + \sum q \cdot \omega + \sum M \cdot tg \alpha$$
.

Согласно принятому правилу знаков, у изгибающего момента знак будет отрицательный, а у сосредоточенной силы и распределенной нагрузки — положительный. Знаки у следующих параметров линии влияния: α — угла наклона в сечении балки под изгибающим моментом, y — ординаты в сечении балки под соответствующей силой и ω — площади участка линии влияния, расположенного в пределах распределенной нагрузки, определяются непосредственно по соответствующим линиям влияния.

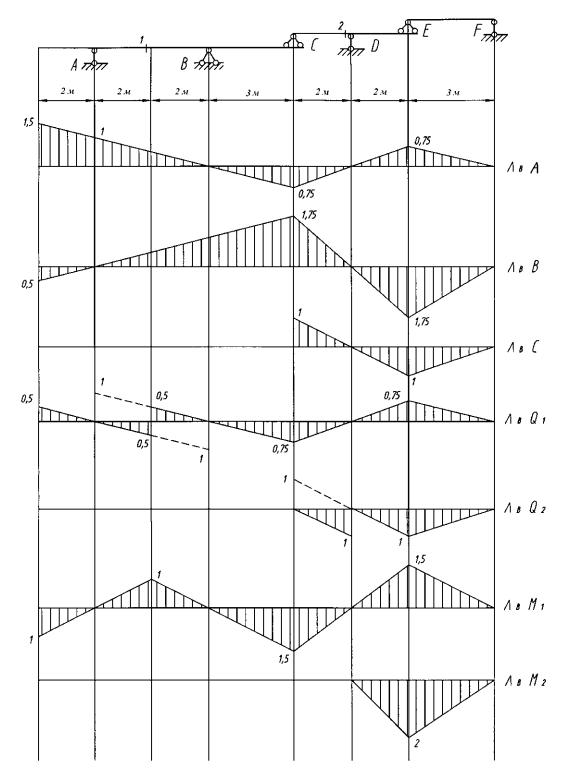


Рис. 1.8. Линии влияния в балке

Таким образом, получим

$$R_A = -6.0,25 + 2.0,5 + 4.((0 + 0,75)/2).3 - 4.(T).$$

$$R_B = -6 \cdot (-0.25) + 2 \cdot 0.5 - 4 \cdot ((-0 - 0.75) / 2) \cdot 3 - -8 (T).$$

$$R_C = 4 \cdot ((0+1)/2) \cdot 3 - 6$$
 (T).

$$Q_I = 2 \cdot 0.5 + (-6) \cdot 0.25 + 4 \cdot ((0 + 0.75) / 2) \cdot 3 = 4 (T).$$

$$Q_2 = -4 \cdot ((0+1)/2) \cdot 2 + (-4) \cdot ((0+1)/2) \cdot 2 + (-4) \cdot ((0+1)/2) \cdot 3 = -14 (7).$$

$$M_I = -6 \cdot (-0.5) + 2 \cdot I + 4 \cdot ((0 + 1.5) / 2) \cdot 3 = I4 (T \cdot M).$$

$$M_2 = 4 \cdot (-2 \cdot 2) / 2 + 4 \cdot (-2 \cdot 3) / 2 = -20 \ (T_{\cdot M}).$$

Сопоставление значений реакций опор и внутренних силовых факторов, определенных по линиям влияния, с соответствующими значениями внутренних силовых факторов, которые определены при построении эпюр M и Q, удобнее выполнять в табличной форме следующим образом.

Наименование	Значение (<i>Т,Тм</i>)	
	Аналитическое	По линиям влияния
R_A	4	4
R_B	-8	-8
R_C	6	6
Q_I	4	4
Q_2	-14	-14
M_1	14	14
M ₂	-20	-20

Примечание

При решении задачи использовалась техническая система единиц МКГСС, в которой, наряду с единицами длины и времени, основной единицей является Килограмм – сила (Тонна – сила), под которой

понимается сила, сообщающая массе, равной массе международного прототипа килограмма, ускорение, равное нормальному ускорению силы тяжести в 9,8 м/с 2 , т. е. 1 к Γ = 9,8 H.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Дарков А. В. Строительная механика./ А. В. Дарков М. : Выс-шая школа, 1986-733 с.
- 2. Снитко Н. К. Строительная механика./ Н. К. Снитко М. : Выс-шая школа, 1992. 486 с.